

AUTO TRANSCRIPTION ChIP KIT

Auto Transcription ChIP kit protein A 16x New Cat. No. C01010030; Old Cat. No. AB-Auto03-A016

> Auto Transcription ChIP kit protein G 16x C01010031 AB-Auto03-G016

Auto Transcription ChIP kit protein A 100x C01010032 AB-Auto03-A100

Auto Transcription ChIP kit protein G 100x C01010033 AB-Auto03-G100

Technical Assistance & Ordering Information

Diagenode s.a. BELGIUM | EUROPE

LIEGE SCIENCE PARK Rue Bois Saint-Jean, 3 4102 Seraing - Belgium Tel: +32 4 364 20 50 Fax: +32 4 364 20 51 techsupport@diagenode.com orders@diagenode.com

Diagenode Inc. USA | NORTH AMERICA

400 Morris Avenue, Suite #101 Denville, NJ 07834 - USA Tel: +1 862 209-4680 Fax: +1 862 209-4681 techsupport.na@diagenode.com orders.na@diagenode.com

For a complete listing of Diagenode's international distributors, visit: http://www.diagenode.com/en/company/distributors.php For the rest of the world, please contact Diagenode s.a.

Contents

Introduction	
SX-8G IP-Star Automated System for ChIP, MeDIP & MBD	
Kit Method Overview	
Kit Materials	
How to perform Automated ChIP in the SX-8G IP-Star® Compact Prepare Reagents Running a protocol	
How to perform Automated ChIP in the SX-8G IP-Star® Loading and running protocol Shutting down the SX-8G IP-Star®	
Quantitative PCR & Data analysis	
Results	
Troubleshooting Guide	
Technical Assistance	
Ordering Information	Back Cover

DIAGENODE AUTO TRANSCRIPTION CHIP KIT USER MANUAL

Introduction

The Diagenode SX-8G IP-Star® Automated System automates immunoprecipitation and increases reproducibility

Diagenode, the leading provider of complete solutions for epigenetics research, offers a variety of end-to-end systems to streamline DNA methylation and chromatin immunoprecipitation workflows. Central to this full offering is Diagenode's Automated Systems, simple yet robust automated bench-top instruments that standardize different epigenetic applications (i.e. ChIP, MeDIP or MethylCap). Diagenode designed these automation systems to make ChIP and DNA methylation studies accessible and reproducible, and ensure consistent data in every experiment.

Diagenode Automated Systems will produce consistent results from any operator regardless of the day, the experimental run, or the lab. Robust and reproducible results is a major goal of today's high resolution epigenomic studies.

Diagenode Automated Platforms replace the numerous manual, error-prone steps of complex epigenetic applications with a reliable, highly consistent and automated process that requires minimal operator intervention. We empower researchers to simplify the tedious protocols and the complexity of many epigenetic protocols. In addition, Diagenode Automated Systems minimize sample carryover, data variability, and costly errors. The platforms offer full workflow support for epigenetics research, utilizing our complete kits and laboratory-validated protocols to rapidly deliver highquality and consistent data.

Auto Transcription ChIP kit

The Auto Transcription ChIP kit was developed to enhance the utility of the ChIP procedure, allowing one to perform many more ChIPs per day and per week. The entire procedure can be performed in a single day, since two overnight incubations have been eliminated. The IP has been optimized to specifically select and precipitate the chromatin with the use of our validated antibodies, buffers and protocols. Furthermore, the use of our automated system will drastically increase the consistency of your ChIP assay.

The Auto Transcription ChIP kit allows guick and highly specific chromatin IP sample analysis. The Auto ChIP kit protocol has been improved to allow researchers to work with smaller volumes than other traditionally used methods. The kit ensures the use of small amounts of reagents per reaction (including antibodies and buffers) and also provides you with fewer buffers in comparison with other kits.

The Auto Transcription ChIP kit has been validated in binding studies when working with antibodies directed to transcription factors or epitope tagged transcription factors. The combination of this high quality kit and the IP-Star allows Chromatin IP to be performed in less than 10 hours. Starting with sheared chromatin, the Automated System provides purified immunoprecipitated DNA from your sample. The Auto ChIP kit protocol has been validated using chromatin sheared by sonication using the Bioruptor.

Customer Feedback

Not only does the IP-Star eliminate the problem of human variation associated with producing our samples, it also enables us to produce 1000-2000 ChIP-seg samples per year very reliably. The IP-Star reduces our processing time down from one day of manual work to just one overnight run with only 30 minutes of hands-on work. The IP-Star has made all our ChIPs consistent and the process completely reliable regardless of the operator or the time of day.

Dr. John Lambourne, Postdoctorate Researcher at the Innovation Centre, McGill University, Canada.

SX-8G IP-Star[®] and SX-8G IP-Star[®] Compact Systems for automation of epigenetic applications

Diagenode has developed two automated platforms (SX-8G IP-Star[®] and SX-8G IP-Star[®] Compact) designed to increase your lab's productivity, efficiency and experimental reproducibility. The two automated platforms are capable of processing up to 16 samples per cycle. The automated systems processes sheared chromatin (or DNA) to deliver purified DNA ready for qPCR, amplification, microarray and sequencing analysis. Both, the SX-8G IP-Star[®] and SX-8G IP-star[®] Compact have an easy-to-use open software that provides you with flexibility. This allows you to create your personal protocol according to your specific needs.

Major benefits of Diagenode Automated Platforms

SX-8G IP-Star[®] Compact

- \rightarrow High resolution ChIP-seq and MeDIP-seq profiles
- \rightarrow Automated library preparation for Next Generation sequencing
- \rightarrow Reduces hands on time to just 30 minutes
- ightarrow Reduces variability between operators and labs
- \rightarrow Ideal for low sample starting amounts
- → Compatible with Diagenode Kits (Auto ChIP kit, Auto Histone ChIP-seq kit, Auto Histone ChIP-seq kit, Auto MeDIP kit, Auto MethylCap kit, Auto hMeDIP, Auto IPure kit)
- \rightarrow Reduces cross-contamination

	SX-8G IP-Star® Compact	SX-8G IP-Star®
Applications	ChIP-seq, MeDIP-seq, MethylCap-seq, hMeDIP, IPure, Sample preparation, Re-ChIP, MagBisulfite, RNA-IP, Library preparation for NGS platforms.	ChIP-seq, MeDIP-seq, MethylCap-seq, hMeDIP, IPure, Sample preparation, Re-ChIP, MagBisulfite, RNA-IP.
Software	Protocols \widetilde{U} <td< th=""><th>SXEG-V52 Varial / Head Particul Flef? Proceed? Varial Image: Control of the control of</th></td<>	SXEG-V52 Varial / Head Particul Flef? Proceed? Varial Image: Control of the control of
User interface	Intuitive touch screen panel	PC Software
User friendly	Software training not required	Software training before use
Dispensing	Automated dispension of assay reagents	Manual dispension of assay reagents
Protocol optimization (flexible parameters)	Antibody coating (temperature, time, mixing speed) Immunoprecipitation (temperature, time, mixing speed) Washes (temperature, time, mixing speed)	Antibody coating (temperature, time) Immunoprecipitation (temperature, time)
New protocol development	Achievable by Diagenode product specialist	Achievable by customer after training
Characteristics	750W x 740 D x 610 H 100 kg 8 Nozzles X-Y-Z axis 4 – 95°C	1070W x 650 D x 780 H 130 kg 8 Nozzles X-Y-Z axis 4-95°C

Improved reproducibility

Our SX-8G IP-Star will increase the immunoprecipitation reproducibility between IPs performed by the same as well as by different operators (see figure 1 and 2 below). Reagents (Antibodies, buffers,...) and sheared chromatin were identical for "ManChIP" and "AutoChIP". The SX-8G IP-Star Automated system removes variation that can be created by manual handling and allows you to optimize and standardize your assay within a lab. The SX-8G IP-Star is designed to improve the accuracy and the reproducibility of any immunoprecipitiation experiment.

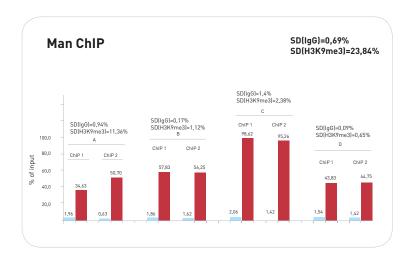


Figure 1: Manual ChIP. Four different operators have each performed two ChIP experiments using H3K9me3 antibody on the genomic region SAT2 (positive locus). 10,000 Hela cells have been used per IP. Reagents and sheared chromatin were identical per assay. The standard deviations between the ChIPs performed by the same operator and between the four different operators are displayed.

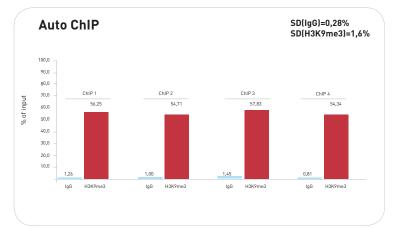
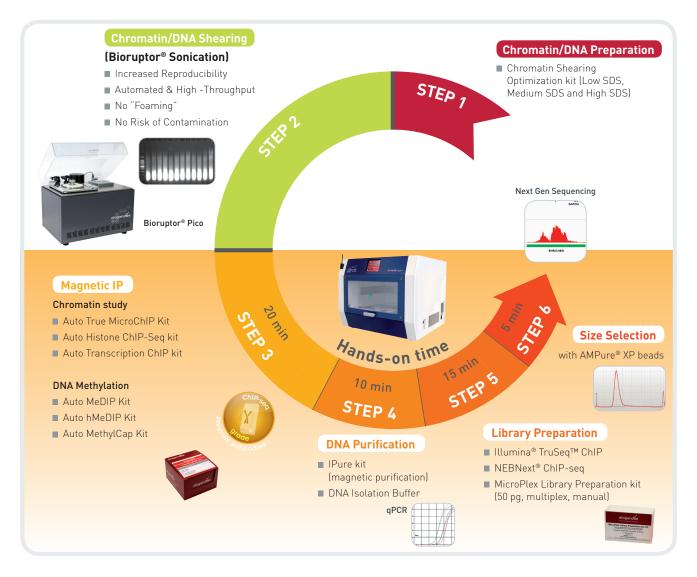



Figure 2: Automated ChIP. Four ChIP experiments using H3K9me3 antibody on the genomic region SAT2 (positive locus) have been performed by the SX-8G IP-Star[®]. 10,000 Hela cells have been used per IP. Reagents and sheared chromatin were identical per assay. The standard deviations between the four ChIPs performed by the SX-8G IP-Star[®] are displayed.

Kit Method Overview

Figure 3. Diagenode provides a full suite of automated solutions for ChIP experiments.

For Step 1, we offer products to isolate nuclei and chromatin. Step 2 describes reproducible sample shearing with the Bioruptor[®] product line. In Step 3 and Step 4, the Diagenode IP-Star Compact provides error-free, walk-away automation for all your immunoprecipitation and antibody capture needs.

Kit Materials

Kit Content

The Auto Transcription ChIP kit contains reagents to perform either 16 or 100 Chromatin Immunoprecipitations by using the SX-8G IP-Star Automated System. The kit content is described in Table 1. Upon receipt, store the components at the temperatures indicated in Table 1.

<u>Note</u>: The kit has been designed to work with transcription factors and non histone proteins and allows to perform ChIP experiments starting with sheared chromatin.

Description	Quantity (x16)	Quantity (x100)	Storage
1.25 M Glycine	2 ml	15 ml	4°C
Protein G or Protein A coated magnetic beads	220 µl	1500 μl	4°C Do not freeze
ChIP-Buffer T	20 ml	125 ml	4°C
Rabbit IgG or Mouse IgG	15 µl	110 µl	4°C
Protease inhibitor mix (200x)	100 µl	700 µl	- 20°C
5% BSA (50x solution)	40 µl	200 µl	- 20°C
Wash Buffer T1	12 ml	90 ml	4°C
Wash Buffer T2	4 ml	30 ml	4°C
Elution Buffer T	4 ml	30 ml	4°C
5 M NaCl	220 µl	1500 μl	4°C
Water	2 ml	10 ml	4°C
DNA Isolation Buffer (DIB)	4 ml	30 ml	4°C
Proteinase K	40 µl	220 µl	-20°C

Table 1. Kit content

Table 2. Reagents available separately

Description	Reference	Description	Quantity	Storage
1 M Sodium butyrate	kch-817-001	-	1 ml	-20°C
Protein A-coated magnetic beads	kch-802-220 kch-802-600 kch-802-150	The beads are supplied for 16 IPs; detergent and 0.02% sodium azide included.	220 μl 660 μl 1500 μl	4°C Do not freeze
Protein G-coated magnetic beads	kch-818-220 kch-818-600 kch-818-150	The beads are supplied for 16 IPs; detergent and 0.02% sodium azide included.	220 μl 660 μl 1500 μl	4°C Do not freeze
Rabbit IgG	kch-504-250	1 µg/µl	250 µl	4°C
Mouse IgG	kch-819-015	1 µg/µl	15 µl	4°C
Antibodies	-	-	www.diage	enode.com
Primer pairs	-	5µM each (Rv & Fw)	www.diage	enode.com
Tips (box)	WC-002-0960		10 x 96 tips	RT
DNA isolation buffer (DIB)	C03050001		30 ml	4°C
Proteinase K	C06050002 (kch-507-250)		250 µl	-20 °C

Table 3. Kits and Modules available separately

Description	Reference	Quantity
Chromatin shearing optimization kit - Low SDS	C01020010 (AA-001-0100)	1 kit
Chromatin shearing optimization kit - Medium SDS	C01020011 (AA-002-0100)	1 kit
Chromatin shearing optimization kit - High SDS	C01020012 (AA-003-0100)	1 kit
IPure	AL-100-0100	100 rxns
Auto IPure	AL-Auto01-0100	100 rxns

Table 4. Plastics and consumables available separately

Description	Reference	Quantity
200 µl tube strips (12 tubes/strip) + cap strips	WA-001-0080	80 pc
200 μl tube strips (8 tubes/strip) + cap strips for SX-8G IP-Star $^{\otimes}$ Compact	WA-002-0120	120 рс
96 well microplates	WA-003-0010	10 рс
Tips (box)	WC-002-0960	960 pc
Tips (bulk)	WC-001-1000	1000 pc
2 ml microtube for SX-8G IP-Star® Compact	WA-008-0100	100 рс
Large reagent container for SX-8G IP-Star® Compact	WA-007-0020	20 pc
Medium reagent container for SX-8G IP-Star® Compact	WA-006-0010	10 рс

How to perform Automated ChIP in the SX-8G IP-Star® Compact

How to perform Automated ChIP in the SX-8G IP-Star® Compact

Prepare Reagents

STEP 1. Cell collection and DNA-protein crosslinking

- 1. Collect the cells by trypsinisation and wash two times with PBS.
- 2. Count the cells and resuspend them in PBS to obtain 10 million cells in 500 μ l of PBS. Aliquot 500 μ l of cell suspension in 1.5 ml tubes.
- **3.** Add 13.5 µl of formaldehyde. Mix by gentle vortexing and incubate for 8 minutes at room temperature to allow fixation to take place.
- **4.** Stop the fixation by adding 57 μl of Glycine solution. Mix by gentle vortexing and incubate for 5 minutes at room temperature. Work on ice from this point onwards.
- 5. Centrifuge at 1,600 rpm (250 x g) for 5 minutes at 4°C and gently aspirate the supernatant without disturbing the cell pellet.
- 6. Wash the cells twice with 1 ml PBS.

STEP 2.

- Start with sheared chromatin in 1%, 0.5% or 0.1% SDS depending on the cell type and the amount of cells to shear. We recommend the use of Diagenode Bioruptor devices in combination with our chromatin shearing optimization kits for the preparation of the sheared chromatin.
- 2. Dilute your sheared chromatin with ChIP Buffer T at least 10 times if shearing was perform in the presence of 1% SDS.
- **3.** Protease Inhibitors are provided in the kit. Add to the diluted sheared chromatin, protease inhibitors to a final concentration of 1X.

<u>Note 1:</u> please consider in advance the cell concentration during the shearing process as the working IP volumes in the automated systems are 100 µl and 200 µl.

<u>Note 2:</u> Diagenode does not recommend to preblock Diagenode's magnetic beads. BSA is however provided in this kit for customers who would like to proceed with preblocking. For preblocking proceed as follow:

- 1. Pippette 100 µl of beads. Add 390 µl CHIP Buffer T and 10 µl BSA 5% (0.1% final concetnration)
- 2. Incubate 60 minutes by rotation.
- 3. Wash once with 100 μl of ChIP BUffer T.
- Resuspend your beads in 100 μl ChIP Buffer T.
 10 μl of magnetic beads will bind up to 2.5 μg of Antibody.

Running a protocol

Diagenode Splash Screen – A0

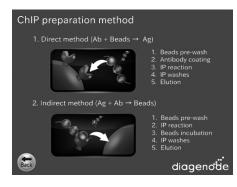
After the software start-up screen disappears, the Diagenode splash screen is displayed for several seconds, and then disappears.

Start Screen – Top menu

After the Digenode splash screen disappears, the start screen is displayed. This is the first active window; it allows the user to enter into three different parts of the software.

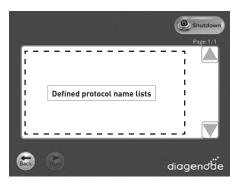
USER ACTIONS:

Buttons:


• Protocols

Protocols screen

- Maintenance (for technical service)
- Information (Diagenode contact details)


All available protocols are displayed on this screen.

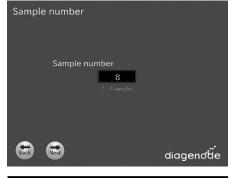
Screen – [ChIP preparation methods]

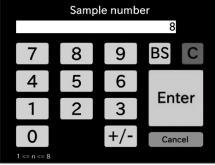
The user can select between protocols for direct or indirect ChIP methods.

Screen – [Categories Name] Protocol List

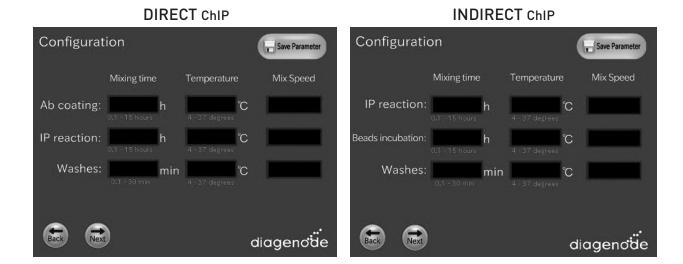
After the user presses the "[Categories Name]" button, the "[Categories Name]" appears. When selected the protocol on the protocol list, the "Run" button shall turn executable.

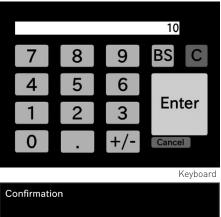
Buttons:


- The user presses the "Back" button. The user returns to the "Protocols" screen.
- The user presses the "Shutdown" button. The screen shall be changed to "Power Off".
- The user presses the "Run" button. The screen shall be changed to "Sample number".
- A Page up the list box.
- ▼ Page down the list box


Screen – Sample number

After the user presses the "Run" button, the "Sample number" appears.

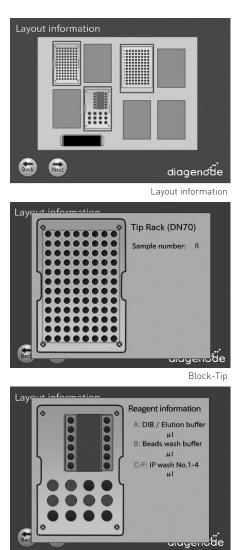

Buttons:


- The user presses the "Sample number" Text box. Then screen will be changed to keyboard.
- The user presses the "Back" button. The user returns to the "Protocol List" screen.
- The user presses the "Next" button. Then screen shall be changed to "Configuration" or "Layout information".

Keyboard

Overwrite parameters ? Yes No

Screen – Configuration


After the user presses the next button from the "Sample number" screen, the "Configuration" screen appears.

Buttons:

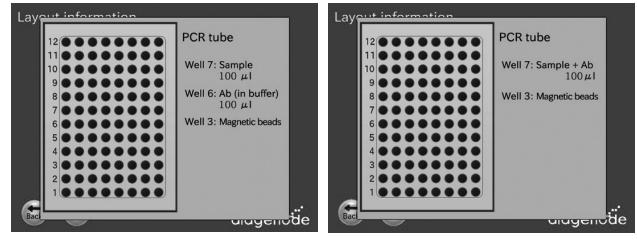
- The user presses the "Back" button. The user returns to the "Protocol List" screen.
- The user presses the "Next" button. The screen shall be changed to "Layout information".
- The user presses the "Save Parameter" button. The screen will be changed to "Save Parameter Confirmation".
 - OK Current parameters shown in the Display View will be stored to the [Protocol].ptd. And, returns the user to the display of the "Configuration" screen.
 - No Returns the user to the display of the "Configuration" screen.
- The user presses the Text box. The screen will be changed to Keyboard or Speed list menu.

Speed list menu

Screen – Layout Information

After the user presses the "next" button from "Sample number" screen or "Configuration" screen, the "Layout Information" screen appears.

Buttons:


- The user presses the "Back" button. The user returns to the previous screen.
- The user presses the "Next" button. The screen shall be changed to "Set confirmation".
- When the user presses a block, that block is magnifies on the work surface layout background. The magnified view provides a better display of the correct method setup for that block on the work surface.
- Based on the selected protocol, the user follows the indications provided in the screens to set up correctly the different reagents and samples.

INDIRECT ChIP

Screen – Layout Information

Beads Wash Buffer: ChIP BufferT Elution Buffer: Elution Buffer T IP wash 1: Wash Buffer T1 IP Wash 2: Wash Buffer T1 IP wash 3: Wash Buffer T1 IP wash 4: Wash Buffer T2

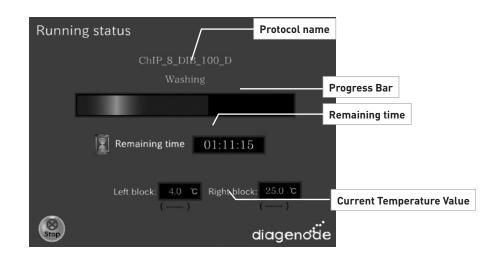
Block-Regent Tip Rack

DIRECT ChIP

NOTE 1: If required, add 2 µl of BSA (5%) to the chromatin sample when running ChIP-100 µl protocols or 4 µl of BSA (5%) to the chromatin sample when running ChIP-200 µl protocols

NOTE 2: If required, specific inhibitors can also be added to the chromatin sample

	DIRECT Ch	IP	II	NDIRECT (ChIP	
Set confirmation	1		Set confirmation			
Protocol and San	nple		Protocol and Sam	ple		
Protocol			Protocol			
Sample number			Sample number			
Configuration			Configuration			
Ab coating	h	°C	IP reaction	h	C	
IP reaction	h	°C	Beads incubation	h	Ĵ	
Washes	min	°C	Washes	min	C	
Current tempera	ature		Current tempera	ture		
Left	block: °C	Right block: C	Left b	olock: C	Right block:	C
Back Run		diagene	otie 📾 📾		diag	enode

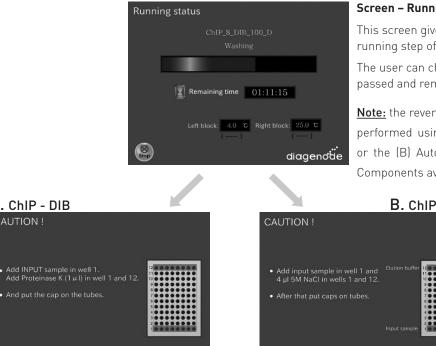

Screen – Set confirmation

After the user presses the "next" button in the "Layout information" screen, the "Set confirmation" screen appears.

At this point, user is expected to be ready to press RUN.

Buttons:

- The user presses the "Back" button. The user returns to the Layout information screen.
- The user presses the "Run" button. This is the expected action when user gets to this display after reviewing blocks. Runs the protocol.

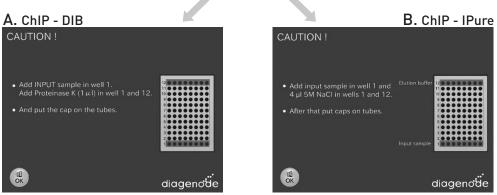

Screen – Running

After the user presses the "Run" button in the "Set confirmation" screen, the "Running" screen appears.

Buttons:

• The user presses the "Stop" button. Then screen shall be changed to "Stop Dialog".

Status screen is preferred as a progress bar that moves across the screen as the step progresses



Screen – Running status

This screen gives informations about the current running step of the protocol.

The user can check through this screen the passed and remaining time of the experiment.

Note: the reverse crosslinking step can either be performed using (A) DNA isolation buffer (DIB) or the (B) Auto-IPure Kit from Diagenode (see Components available separately page9/10)

Screen – Elution

INPUT is defined as

- a) 100µl protocol: INPUT= 1µl diluted sheared chromatin + 99 µl DIB buffer
- b) 200 µl protocol
 - INPUT= 2µl diluted sheared chromatin + 98 µl DIB Buffer

EL OK

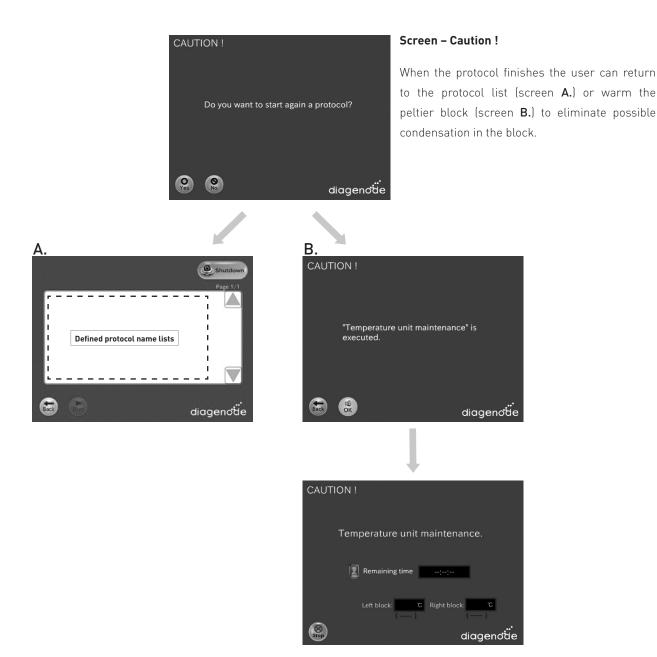
diagenode

Screen – Elution

INPUT is defined as

- a) 100µl protocol: INPUT= 1µl diluted sheared chromatin + 95 µl Elution Buffer
- b) 200 µl protocol

INPUT= 2µl diluted sheared chromatin + 94 µl Elution Buffer


Screen – Finish/End

When the protocol is complete, a window appears telling user the run is over. The screen behind this window should be the Startup screen. When OK is pressed, then the Startup screen appears and the user can immediately begin to remove their sample and prepare the next run.

At this point, user is expected to be ready to press RUN.

Buttons:

• The user presses the "OK" button. Then screen shall be changed to "[Categories Name] Protocol List".

Note 1: RNase treatment by incubating the samples with RNase at 37°C during 30 minutes can be performed after the reverse crosslinking and it is recommended for ChIp-seq experiments. However, Diagenode does not provide RNase.

<u>Note 2</u>: DNA purification can be done using our simplified and validated Auto IPure kit from Diagenode. Alternatively, spin columns and Phenol-chloroform method can also be used.

How to perform Automated ChIP in the SX-8G IP-Star®

How to perform Automated ChIP in the SX-8G IP-Star®

A) Prepare Reagents

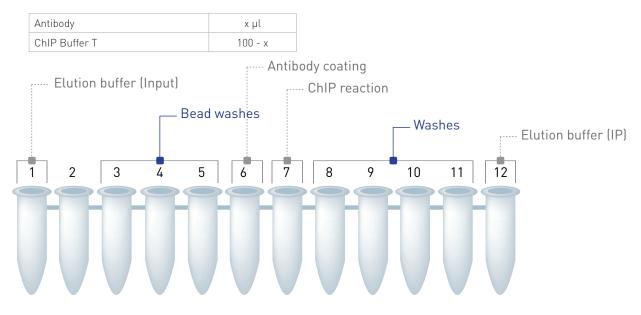
STEP 1. Cell collection and DNA-protein crosslinking

- 1. Collect the cells by trypsinisation and wash two times with PBS.
- Count the cells and resuspend them in PBS to obtain 10 million cells in 500 µl of PBS. Aliquot 500 µl of cell suspension in 1.5 ml tubes.
- 3. Add 13.5 µl of formaldehyde. Mix by gentle vortexing and incubate for 8 minutes at room temperature to allow fixation to take place.
- **4.** Stop the fixation by adding 57 μl of Glycine solution. Mix by gentle vortexing and incubate for 5 minutes at room temperature. Work on ice from this point onwards.
- 5. Centrifuge at 1,600 rpm (250 x g) for 5 minutes at 4°C and gently aspirate the supernatant without disturbing the cell pellet.
- 6. Wash the cells twice with 1 ml PBS.

STEP 2.

- Start with sheared chromatin in 1%, 0.5% or 0.1% SDS depending on the cell type and the amount of cells to shear. We recommend the use of Diagenode Bioruptor devices in combination with our chromatin shearing optimization kits for the preparation of the sheared chromatin.
- 2. Dilute your sheared chromatin with ChIP Buffer T at least 10 times if shearing was perform in the presence of 1% SDS.
- **3.** Protease Inhibitors are provided in the kit. Add to the diluted sheared chromatin, protease inhibitors to a final concentration of 1X.

<u>Note 1:</u> please consider in advance the cell concentration during the shearing process as the working IP volumes in the automated systems are 100 µl and 200 µl.


<u>Note 2:</u> Diagenode does not recommend to preblock Diagenode's magnetic beads. BSA is however provided in this kit for customers who would like to proceed with preblocking. For preblocking proceed as follow:

- 1. Pippette 100 µl of beads. Add 390 µl CHIP Buffer T and 10 µl BSA 5% (0.1% final concentration).
- 2. Incubate 60 minutes by rotation.
- 3. Wash once with 100 µl of ChIP BUffer T.
- Resuspend your beads in 100 μl ChIP Buffer T.
 10 μl of magnetic beads will bind up to 2.5 μg of Antibody.

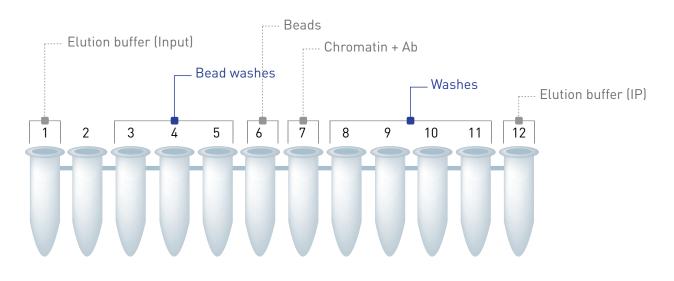
B) Dispense prepared reagents into the corresponding tubes (see picture below)

ChIP Direct Method (Ab coating)

2. Preparation Buffer + Ab

With this method the antibody is first coated on the surface of the magnetic beads and after that the bound antibodies are added to the sheared chromatin.

		IPURE	
Tube #	Description	100 μl protocol	200 µl protocol
1	Elution buffer T + 5M NaCl	95 µl + 4 µl	94 µl + 4 µl
2	Empty	-	-
3	Magnetic beads*	10 µl	20-50 µl
4	ChIP Buffer T	50 µl	100 µl
5	ChIP Buffer T	50 µl	100 µl
6	ChIP Buffer T + Ab	100 µl	100 µl
7	Sheared Chromatin Mix	100 µl	200 µl
8	Wash Buffer T1	100 µl	150 µl
9	Wash Buffer T1	100 µl	150 µl
10	Wash Buffer T1	100 µl	150 µl
11	Wash Buffer T2	100 µl	150 μl
12	Elution buffer T + 5M NaCl	96 µl + 4 µl	96 µl + 4 µl


* This Auto Transcription ChIP kit has been optimized with Diagenode's high quality ChIP-grade antibodies and we use very low amounts of antibody per IP. The binding capacity of 10 μl of magnetic beads is ~3 μg of antibody. If you plan to use more than 3 μg of antibody per IP we recommend that the quantity of beads is adjusted accordingly. Please contact us for advice if required.

Note 1: If required, add 2 μl of BSA (5%) to the sheared chromatinmix when running ChIP-100 μl protocols or 4 μl of BSA (5%) when running ChIP-200 μl protocols

Note 2: If required, specific inhibitors can also be added in the sheared chromatin mix.

ChIP Indirect method (IP and beads incubation)

With this method the antibodies are incubated first with the sheared chromatin and after that the magnetic beads are added to the immunocomplex.

		IPURE	
Tube #	Description	100 μl protocol	200 µl protocol
1	Elution buffer T + 5M NaCl	95 μl + 4 μl	94 µl + 4 µl
2	Empty	_	-
3	Magnetic beads*	10 µl	20-50 µl
4	ChIP Buffer T	50 µl	100 µl
5	ChIP Buffer T	50 µl	100 µl
6	ChIP Buffer T	100 µl	100 µl
7	Sheared Chromatin Mix + Ab	100 µl	200 µl
8	Wash Buffer T1	100 µl	150 µl
9	Wash Buffer T1	100 µl	150 µl
10	Wash Buffer T1	100 µl	150 µl
11	Wash Buffer T2	100 µl	150 µl
12	Elution buffer T + 5M NaCl	96 µl + 4 µl	96 µl + 4 µl

* This Auto Transcription ChIP kit has been optimized with Diagenode's high quality ChIP-grade antibodies and we use very low amounts of antibody per IP. The binding capacity of 10 μl of magnetic beads is ~3 μg of antibody. If you plan to use more than 3 μg of antibody per IP we recommend that the quantity of beads is adjusted accordingly. Please contact us for advice if required.

<u>Note 1:</u> If required, add 2 ul of BSA (5%) to the sheared chromatin mix when running ChIP-100 ul protocols or 4 ul of BSA (5%) when running ChIP-200 ul protocols

Note 2: If required, specific inhibitors can also be added to the sheared chromatin mix

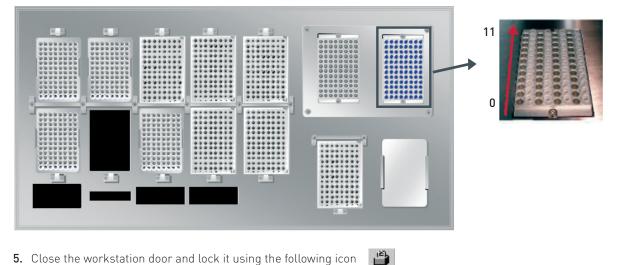
Loading and running protocol

Be sure that the computer connected to the SX-8G IP-Star never switches to the standby modus. (standby modus has to be inactivated). Standby of the computer will lead to the abort of the protocol.

Table 3.

Protocol Name	ChIP_9h_IPure	ChIP_22h_IPure
Reagent Preparation*	1h	1h
Magnetic Bead Washes	1h	1h
Ab coating	2h	5h
Immunoselection	5h	15h
Washes	20min	20min
Add reagents	15min	15min
Elution Step**	30min	30min
Total Time	10h05 min	23h05 min

* Input required is sheared chromatin ready-to-ChIP


** Performed by using DIB (DNA Isolation buffer)

Note: Hands-on-work time is reduced to 1h45 min in both protocols!

- 1. Switch on the SX-8G IP Star. The power switch is on the right side of the instrument.
- 2. Switch on the computer.
- 3. Start SX-8G V52 software through the following icon

4. Place the prepared tube strip on the right cooling / heating block of the workstation

5. Close the workstation door and lock it using the following icon

6. Press the following icon

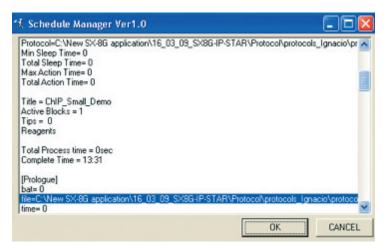
Select the protocol of interest. Press start.

\$X8G-V52 Ver0.7 ChiP_Small_Demo.HLD	X
diagenode The program ended successfully.	
Protocol List ChIP_Small_Demo.HLD	Start
	Modify
	Close
Folder : C:Wew SX-8G application/16_03_09_SX8G-IP-STAR/Protocol/protocols_Ignacio/protocol IP160309/ChIP_	Small_Demo

IMPORTANT NOTE:

If the ChIP protocols do not appear in the screen,

- 1. Open the SX-8V52 directory
- 2. Open Easy start ini file. Write the directory location of the protocols


The Easy start ini file should contain the following information:

[EASYSTARTSCREEN]

HoldFilePath = C:\Documents and Settings\Desktop\New software protocols\ChIP\Ab Coating for loading ChIP Direct protocols or HoldFilePath = C:\Documents and Settings\Desktop\New software protocols\ChIP\IP and beads incubation for loading ChIP Indirect protocols In red it is indicated the directory location of the ChIP protocols.

- 3. Start now SX-8G V52 software through SX-8G V52 exe.file
- 4. Press button for Easy Protocol Start screen and load the protocol of interest

Before starting the protocol a start confirmation window will appear. Press OK and the protocol will run.

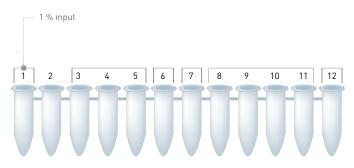
Alternatively, incubation time for antibody coating and temperature and incubation time for the IP reaction can be adjusted in an existing protocol by selecting the modify button. The modified protocol can also be saved as new protocol.

SX8G-V52 Ver0.7 ChIP_Small_Demo.Hl	D		
diagenoide The pro	ogram ended su	ccessful	ly.
Protocol List ChIP_Small_Demo.HLD			Start
			Madifi
			Modify
			Close
Folder : C:\New SX-8G application\16_03_09	SX8G-IP-STAR\Protocol\protocols	_lgnacio\protocol	IP160309\ChIP_Small_Demo
	↓ ↓		
🖣 Modify Parameter for	ChIP		
ChIP			
Incubation tim	e adjust fo		
Ab coating	5	h	1 → 5 hours
IP reaction	15	h	1 → 15 hours
Temperature	adjust for (ChIP	
IP reaction	25.0	°C	4 -> 25 celsius
ОК			Cancel
Save modification protocol	V		
Save modification	n protocol as	s :	
OK	NO		Cancel

7. The program will run through the following steps: magnetic bead washes, IP and IP washes.

4412 14:16 Sim 442 14:16 (4-2) (Johnne Mind) 443 File Name Status 10:40 File Name Status 10:40 Conconnents and Settings/SigniacioMy Completed 8 = (1-10) (File Status) 8 = (1-10) (File Status) 8 = (1-10) (File Status) 9 = (1-10) (File Status) 11:0 File Name 2 = (1-10) (File Status) 3 = (1-10) (File Status) 4 = (1-10) (File Status) 4 = (1-10) (File Status) 4 = (1-10) (File Status) 5 = (1-10) (File Status) 4 = (1-10) (File Status) 5 =-	ask Manager2 2000.11.13		
44.12 14.16 Velocity immobilize to basis PT reaction DNA purification (DIB_1 day) (1-8-2) Molume Mining Velocity immobilize to basis PT reaction DNA purification (DIB_1 day) (1-8-2) Molume Mining Velocity immobilize to basis	▶ II 0		
Intervention (1-2-0) Nuture Mining) National y immebilize to basis // Pr reaction DNA purification(DIB_1 day) (1-2-0) Nuture Mining) Intervention File Name Status Intervention Status (1-3-0) Nuture Mining) Intervention Status (1-10-0) Pre-Status Nuture Mining) Intervention (1-10-0) Pre-Status Nuture Mining) (1-10-0) Pre-Status Nuture Mining) Intervention (1-10-0) Pre-Status Nuture Mining) (1-10-0) Pre-Status Nuture Mining) <th></th> <th></th> <th>☐ Sim</th>			☐ Sim
without in the instance of the insthe instance of the instance of the instance of the i	14.10	Los de de la terrera del de el	
National Processing File Name Status (1-6, P) Volume Mining IL-0-D: Documents and Settings/Ignacio/My Complete (1-6, P) Volume Mining (1-6, P) Volume Mining IL-0-D: Documents and Settings/Ignacio/My Complete (1-6, P) Volume Mining (1-6, P) Volume Mining IL-0-D: Documents and Settings/Ignacio/My Complete (1-10, P) Pire Settings/Ignacio/My (1-10, P) Pire Settings/Ignacio/My ID (1-10, P) Pire Settings/Ignacio/My (1-10, P) Pire Settings/Ignacio/My ID (1-10, P) Pire Settings/Ignacio/My (1-10, P) Pire Settings/Ignacio/My ID (1-10, P) Pire Settings/Ignacio/My (1-10, P) Pire Settings/Ignacio/My ID (1-10, P) Pire Settings/Ignacio/My (1-10, P) Pire Settings/Ignacio/My ID (1-10, P) Pire Settings/Ignacio/My ID (1-11, P) Volume Mining (1-111, P) Volume Mining (1-112, P) Volum			
Fair Name Status (1-5-5) (pir-Dea) (1-1-5) L00-0: Documents and Settings/signalaci/My Completed (1-3-2) (1-3-2) (1-3-2) B = (1-10-2) (1-3-2)	Antibody immobilize to beads> IP reaction> DNA purific		
Partner Status (n-6.6) Magnet OFF 0 LG 0-0-CDocuments and SettingskyniacioMity Completed (n-6.6) Magnet OFF 0 4-50-Discournents and SettingskyniacioMity Completed (n-10.7) Right Index (MHIS) 4-50-Discournents and SettingskyniacioMity Walkelby (N-10.7) Right Index (MHIS) 0-mo- (n-10.6) Reform 7 (n-10.6) Reform 7 0-mo- (n-11.6) Reform 7 (n-11.6) Reform 7 0-mo-		(1.0.5) [Bir Don]	
L00-0:Documents and SettingskigniacioMy Complete Walkup (1-5-7) [interium Height ZWow] A = 1-0:Documents and SettingskigniacioMy Walkup (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-10-3) [interium Height ZWow] (1-10-3) [interium Height ZWow] D = (1-11-3) [interium Height ZWow] (1-11-3) [interium Height ZWow] D = (1-11-3) [interium Height ZWow] (1-11-3) [interium Height ZWow] J = (1-11-3) [interium Height ZWow] (1-12-3) [interium Height ZWow] (1-12-3) [interium Height ZWow] J = (1-11-3) [interium Height ZWow] (1-12-3) [interium Height ZWow]	File Name		
ELG 0-10 Concurrents and Setting/signal/clow/W Completed (1-10.1) Fight Discrivation() B = (1-10.2) Pictor J (1-10.2) Pictor J D = (1-10.2) Pictor J (1-10.2) Pictor J D = (1-11.2) Pictor J D = (1-12.2) Pictor J Value And E Motive I fitne messes (1-12.2) Pictor J D = (1-12.2) Pictor J			7 Movel
A=1-C:Documents and SettingstignatioNMy WakeUp (1-10.2) [Press] C = (1-10.2) [Press] C = (1-10.2) [Press] D = (1-10.2) [Press] E = (1-10.2) [Press] B = (1-10.2) [Press] O = (1-10.2) [Press] O = (1-1.12) [Altimot Mining] O = (1-1.12) [Altimot Mining] I = -	PLG0>C1Documents and Settings1gniacio1My		
B =	A=1>C:(Documents and Settings)(gniacio)My		
0	Berry		
D	C.m.		endl
2	-	(1-10-5) [Pre-Don]	
		(1-10-8) (Antibody Mix) 0	
0 mm (1-11.2) (Volume Mang) 1 mm (1-12.2) (Volume Mang) <		(1-11-1) [Action Z]	
Hammed (1-1) Hammed KM I = (1-1) Hammed KM J = (1-1) Hammed KM J = (1-1) Hammed KM L = (1-1) Hammed KM L = (1-1) Hammed KM K = (1-1) Hammed KM		(1-11-2) [Volume Mixing	1
is (1-1-5) [Air disg.] is (1-1-5) [Air disg.] K = (1-1-5) [Air disg.] K = (1-1-5) [Air disg.] Reset (1-1-5) [Air disg.] Constraints (1-1-5) [Air disg.] Stack DUP (1-1-3) [Air disg.] U.g. in @POP IPS_PEED_HADE.Deet0 (1-2-3) [0] U.g. in @POP IPS_PEED_HADE.Deet0 (1-3-2) [Air disg.] Mar. Inset (2) Qioux Itine misses) (1-1-3) [Air disg.] Stack DUP PissPEED_HADE.Deet0 (1-3-3) [Air disg.] Piss_min (1-3-3) [Air disg.] (1-3-3) [Air disg.] Piss_donin (1-3-3) [Air disg.] (1-3-3) [Air disg.] Stack Dup (1-3-3) [Air disg.] (1-3-3) [Air disg.] Piss_donin (1-3-3) [Air disg.] (1-3-3) [Air disg.] Stack Dup		(1-11-3) (Magnet ON)	
j= (1-1:6) Magnet 0-F[0 K= (1-1:7) Alcross 1 L= (1-1:7) Alcross 1 Stack DUP Magnet 0-F[0 (1-1:7) Alcross 1 Stack DUP Magnet 0-F[0 (1-1:7) Alcross 1 Stack DUP Magnet 0-F[0 (1-1:2) [I-main Height ZWee] (1-1:2) [I-main Height ZWee] (1-1:2) [I-main Height ZWee] (1-1:2) [I-main Height ZWee] (1-1:2) [I-main Height ZWee] (1-1:3) [I-main Height ZWee] (1-1:3) [I-main Height ZWee] (1-1:3) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee] (1-1:4) [I-main Height ZWee]	H=	(1-11-4) [Volume Mixing	i i i
Ke	1=		
	J =		č.
"Repeat (1-12-1) [************************************	K=		
Vide mode 5000/collitionemose) (1-122) [Praction] 0 Stack DUP (1-123) [Praction] 0 (1-123) [Praction] 0 Usi, In 6gPO PP SPEED_H(Aps, Speed) (1-132) [Praction] 0 (1-132) [Praction] 0 Usi, In 6gPO PP SPEED_H(Disp. Speed) (1-132) [Praction] 0 (1-132) [Praction] 0 Usi, Origo Port PSEED_H(Disp. Speed) (1-132) [Praction] 0 (1-134) [Praction] 0 Pras_time (1-134) [Praction] 0 (1-135) [Principal Constraint Height Z More] IF, Gob LE 17200(Maing Time, Sec); Repeat (1-134) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] Stack Dop (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More] (1-143) [Principal Constraint Height Z More]	L=		t Z Move]
Stack DUP (1-123) []0 Lup (ngPOP PF SPEED_H(Asp. Speed) (1-13+T) Right NotKWellib) Walt_msec (200/waitImemsec) (1-13+T) Right NotKWellib) Stack DUP (1-13-T) Right NotKWellib) Lu_ out (gPOP HF_SPEED_H(Disp. Speed) (1-13-S) Right Results results and (1-13-S) Right Results results and (1-13-S) Right Results and (1-13-S) Right Results and (1-14-T) Right Results and (1-14-S) Right Results and (1-14-S) Right Results and (1-14-S) Right Resu	Repeat		
Lig_in_group #P_SPED_H(App, Dased) (1-31) [Right block/will6]) Wait_msec 1200xettimemsec) (1-32) [Richt Dack/will6]) Stack DUP (1-33) [Richt Dack/will6] Stack DuP (1-34) [Richt Dack Stack DuP (1-35) [Richt Dack Stack Dup (1-34) [Richt Dack] Back Dup (1-34) [Richt Dack] Stack Dup (1-34) [Richt Dack] (1-34) [Richt Dack] (1-34) [Richt Dack]			
Walt msse: (1-32) Aktion 2 Stack DUP (1-132) Bleader services Liq_out (gROP HF_SPEED_H(I)sp. Speed) (1-134) Bleader services Liq_out (gROP HF_SPEED_H(I)sp. Speed) (1-134) Bleader Services IF_JORD LIF (J2000Maing Time, Sec), Repeat (1-134) Bleader Services Stack Dop (1-134) Bleader Services Stack Dop (1-134) Bleader Services Stack Dop (1-147) Bleader Services (1-142) Bleader Services (1-142) Bleader Services (1-142) Bleader Services (1-142) Bleader Services			
Stack Dup (1-3.3) Beads resuspend] Lup and GPOP H#_SPEED_H(Disp. Speed) (1-3.4) [P reaction [0 Pass_time (1-3.4) [P reaction [0 [I: Goot LF 7200(Muing Time; Sec); Repeat (1-3.4) [P reaction [0 Stack Drop (1-3.4) [P reaction [0 Stack Drop (1-3.4) [P reaction the High Z Movie] (1-4.5) [Refutime to Callect[(1-4.5) [Refutime to Callect[(1-4.4) [New To Callect[(1-4.4) [New To Callect[(1-4.4) [New To Callect[(1-4.4) [New To Callect[(1-4.4) [New To Callect[(1-4.4) [New To Callect[116)]
Ling, out (gepore) Hars_SPEED_HCDIsp. Speed) (1-3-4) (H-3) (H-3) (H-3) HP ass_time (1-3-3) (H-3) IF_ Doeb LE 172000Mang Time, Sec), Repeat (1-3-3) (H-3) Stack Drop (1-3-3) (H-3) Stack Drop (1-3-3) (H-3) Stack Drop (1-3-3) (H-3) (1-3-4) (H-3) (H-3) (1-3-2) (H-3) (H-3) (1-3-2) (H-3) (H-3) (1-3-2) (H-3) (H-3-2) (1-3-4) (H-3-2) (1-3-2) (H-3-2) (1-3-2) (H-3-2)			121
Pass_time (1-3-5) kir-losp] II. Goot LF 7200(Mung Time; Sec); Repeat (1-3-6) (Rinktimum Height Z Move) Stack Drop (1-3-6) (Rinktimum Height Z Move) (1-4-1) New Time Do Cellect (1-4-1) New To Cellect (1-4-4-2) Rinktim Do Cellect (1-4-4) New Time De Cellect			aual
IF_Ooto LE i7200(Muing Time; Sec); Repeat (1-13-0) [Tim Discard] Stack Drop (1-13-7) [Tim Discard] (1-14-1) [New Tp Collect] (1-14-2) [New Tp Collect] (1-14-2) [New Tp Collect] (1-14-2) [Net Tp Collect]			
(1-13-7) [TID Discard] (1-14-1) [New Tip Collect] (1-14-2) [Right block(Well6)] (1-14-2) [Right block(Well6)]			4.7 Manual
(1-14-1) [New Tip Collect] (1-14-2) [Right block(Well6)] (1-14-3) [Action Z]			17 MOA6]
(1-14-2) [Right block(Well6)] (1-14-3) [Action Z]	stack Drop		
(1-14-3) [Action Z]			
			110/1
		(1-14-3) (Action 2) (1-14-4) (Beads resusp	ond

During protocol the next window will be displayed indicating the step that the protocol is processing.


8. ChIP-IPure

After the IP washes the following window will be appear.

Attentio	on Please! 🔀
?	<<<< CAUTION!! >>>> Open the door, Add 1µl input in well 1, And put the cap on the PCR tube

1. Add 1 % Input to well 1: 1 µl of input when using the 100 µl protocol ; 2 µl of input using the 200 µl protocol.

- 2. Close the tube strip with the corresponding caps.
- 3. Press OK.
- 4. Reverse crosslinking will be performed at 65°C for 4 hours or 0.N.

<u>Note</u>: Optional. RNase treatment by incubating the samples with RNase at 37°C during 30 minutes can be performed after the reverse crosslinking. Diagenode does not provide RNase.

5. DNA purification can be done using our simplified and validated Auto IPure kit from Diagenode. Alternatively, spin columns and Phenol-chloroform method can also be used.

Shutting down the SX-8G IP-Star

- 1. Click on File and press End to close the software correctly.
- 2. Switch off the computer and its monitor.
- 3. Switch off the SX-8G IP-Star Automated System (power switch on the right side).

Note: Ensure that the door is closed!

Quantitative PCR & Data Analysis

This last step consists in amplifying and analysing the IP'd DNA.

1. Prepare the **qPCR mix** using SYBR PCR Green master mix. **qPCR** cycles are given below.

qPCR mix (total volume of 25 µl/reaction):

1 µl of provided primer pair (stock: 5 µM each: reverse and forward)

- + 12.5 µl of master mix (e.g.: iQ SYBR Green supermix)
- + 5.0 µl of purified DNA sample and diluted purified input(s) (see above for input dilution)
- + 6.5 µl of water

qPCR cycles					
	Temperature	Time	Cycles		
PCR Amplification	95°C	3 minutes	x1		
	95°C	30 seconds			
	60°C	30 seconds	x40		
	72°C	30 seconds			
Melting Curve	65°C and increment of 0.5°C per cycle	1 minute	x60		

2. When the PCR is done, **analyse** the results. Some major advices are given below.

• Your own primer design

- » Self-complementarity and secondary structure of the primers can be tested using primer design programs. Annealing temperature of 60°C is recommended for qPCR primers.
- » Short length of amplified DNA fragment (50 150 bp) facilitates the PCR efficiency and reduces potential problems in amplification of G/C-rich regions.
- » Difference in melting temperature between forward and reverse primers should not exceed 2 to 3°C.
- » G/C stretches at the 3' end of the primers should be avoided.

• Advantages of the qPCR

» qPCR or Real time PCR enable fast, quantitative and reliable results. Visit: http://www.gene-quantification.info/. The Gene Quantification page describes and summarises all technical aspects involved in quantitative gene expression analysis using real-time qPCR & qRT-PCR. It presents a lot of applications, chemistries, methods, algorithms, cyclers, kits, dyes, analysis methods, meetings, workshops, and services involved.

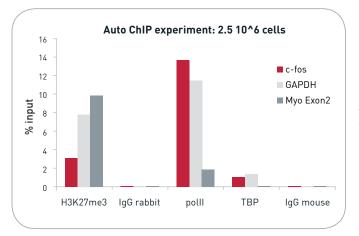
• Validation of your primers

- » Test primer sets by in silico PCR: http://genome.cse.ucsc.edu/cgi-bin/hgPcr. Primers should amplify unique DNA products from the genome.
- » Test every primer set in qPCR using 10 fold-serial dilutions of input DNA. Calculate amplification efficiency (AE) of primer set using the following by formula(5): AE= 10^(-1 / slope)
- » The ideal amplification factor is 2. If it is not the case the qPCR reagents from different brand or new primers should be tested.
- » qPCR products should also be run on a high resolution agarose gel since melting curve analysis in qPCR does not always pick up primer dimer or additional products.

- » The efficiency of chromatin immunoprecipitation of particular genomic locus can be calculated from qPCR data and reported as a percentage of starting material: % (ChIP/ Total input).
- » % (ChIP/ Total input)= 2^[(Ct(x%input) log(x%)/log2) Ct(ChIP)]x 100%
- » Here 2 is the amplification efficiency (AE) as calculated above(5); Ct (ChIP) and Ct (x%input) are threshold values obtained from exponential phase of qPCR for the IP'd DNA sample and input sample respectively; the compensatory factor (logx%/log2) is used to take into account the dilution 1:x of the input. The **recovery** is the % (ChIP/ Total input).

0r

- » % input= AE^(Ctinput CtChIP) x Fd x 100%
- » Here AE is amplification efficiency as calculated above (5); CtChIP and Ctinput are threshold values obtained from exponential phase of qPCR; Fd is a dilution factor of the input DNA to balance the difference in amounts of ChIP and input DNA taken for qPCR.


Relative occupancy

- » Relative occupancy can be calculated as a ratio of specific signal over background.
- » Relative occupancy can be calculated as a ratio of specific signal over background:
- » Occupancy= % input (specific loci) / % input (background loci)

Relative occupancy is then used as a measure of the protein association with a specific locus; it provides clues about specificity of ChIP. Highly specific ChIP can result in about 10 fold enrichment over background and some antibodies can reach up to 1000 fold. This value does not only depend on the antibody but also on the target. ChIP result can be considered as reliable in case of significant values for both efficiency and specificity.

• Use of a **standard curve generated from fragmented genomic DNA**. A dilution series is made and qPCR is run on DNA with the primer one uses for ChIP. This will give the PCR efficiency. Most qPCR programs allow automatic calculation of the DNA quantity in the samples by comparing with the Ct and known quantities of DNA standards.

Results

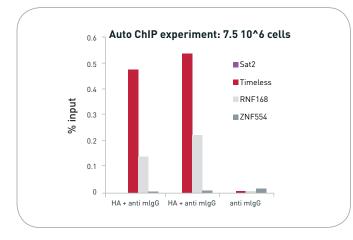


Figure 1. Auto ChIP experiment was performed using the H3K27me3, pol II and TBP antibodies and the Auto Transcription ChIP kit. Sheared chromatin from 2.5 x 10^6 U2OS cells was used in each ChIP reaction. Results are graphed as percentage of the input. C-fos and GADPH promoter regions were tested as positive binding sites for pol II and TBP whereas the exon 2 of Myoglobin was tested as negative control region for both transcription factors. H3K27me3 was used as antibody control for the ChIP experiment

Figure 2. Auto-ChIP assays using an antibody specific for the HA epitope tag were performed using chromatin isolated from MCF7 cells expressing HA-E2F1. IP was performed by incubating during 15 hours the chromatin (7.5×10^{6} cells) together with a monoclonal antibody directed to HA epitope (7.5 immunocomplex with µg) and anti mouse IgG antibody (7.5μ l). The anti mouse IgG antibody is used as "bridge" between the immunocomplex and the protein A coated magnetic beads. The pulled down DNA was purified using the IPure technology (Diagenode) and qPCR was performed with Timeless and RNF168 as positive primer sets for HA-E2F1. ZNF554 and SAT2 primer sets were used as negative controls. Results are shown as a percentage of input.

Troubleshooting Guide

Error Cause	Remedy
SX-8G IP-Star cannot be switched on	SX-8G IP-Star is not receiving power. Check that the power cord is connected to the workstation and to the wall power outlet.
Computer cannot be switched on	Computer is not receiving power. Check that the power cord is connected to the computer and to the wall power outlet.
SX-8G IP-Star shows no movement when a protocol is started	SX-8G IP-Star is not switched on. Check that the SX-8G IP-Star is switched on.
SX-8G IP-Star shows abnormal movement when a protocol is started	The pipettor head may have lost its home position. In the Software, select "Manual Operation/Home". After confirming that the pipettor head moves to the home position, run the protocol again.
Aspirated liquid drips from the disposable tips	Dripping is acceptable when ethanol is being handled. For other liquids: air is leaking from the syringe pumps. Grease or replace the O-rings. If the problem persists, contact DIAGENODE Technical Services.

Technical Assistance

At DIAGENODE we pride ourselves on the quality and availability of our technical support. Our Technical Services Departments are staffed by experienced scientists with extensive practical and theoretical expertise in molecular biology and the use of DIAGENODE products. If you have any questions, or experience any difficulties regarding the SX-8G IP-Star or DIAGENODE products in general, do not hesitate to contact us.

DIAGENODE customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at DIAGENODE. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques.

For technical assistance and more information call the DIAGENODE Technical Service Department or contact your local distributor.

- customersupport@diagenode.com
- customersupport.na@diagenode.com

Ordering information

Description	Cat. No. (NEW)	Cat. No. (OLD)	Format
SX-8G IP-Star® Compact	B0300002	UH-002-0001	1 unit
Auto True MicroChIP kit	C01010140	/	16 rxns
Auto True MicroChIP & MicroPlex Library Prep Package	C01010141	/	16 ChIP rxns & 12 library prep rxns
MicroPlex Library Preparation kit x12	C05010010	AB-004-0012	12 rxns
Auto Histone ChIP-seq kit protein A x16	C01010020	AB-Auto02-A016	16 rxns
Auto Histone ChIP-seq kit protein A x100	C01010022	AB-Auto02-A100	100 rxns
Auto Histone ChIP-seq kit prowwtein G x16	C01010021	AB-Auto02-G016	16 rxns
Auto Histone ChIP-seq kit protein G x100	C01010023	AB-Auto02-G100	100 rxns
Auto Transcription ChIP kit protein A x16	C01010030	AB-Auto03-A016	16 rxns
Auto Transcription ChIP kit protein A x100	C01010032	AB-Auto03-A100	100 rxns
Auto Transcription ChIP kit protein G x16	C01010031	AB-Auto03-G016	16 rxns
Auto Transcription ChIP kit protein G x100	C01010033	AB-Auto03-G100	100 rxns
Auto ChIP kit protein A x100	C01010011	AB-Auto01-A100	100 rxns
Auto ChIP kit protein G x100	C01010013	AB-Auto01-G100	100 rxns
Auto MeDIP kit x16	C02010011	AF-Auto01-0016	16 rxns
Auto MeDIP kit x100	C02010012	AF-Auto01-0100	100 rxns
Auto hMeDIP kit x16	C02010033	AF-Auto02-0016	16 rxns
Auto MethylCap x48	C02020011	AF-Auto01-0048	48 rxns
Auto IPure kit	C03010010	AL-Auto01-0100	100 rxns

Visit us at one of Diagenode's demo sites or discover our Automated Systems by performing some assays with the help of our R&D and Technical Department.

www.diagenode.com

Diagenode s.a. BELGIUM | EUROPE

LIEGE SCIENCE PARK Rue Bois Saint-Jean, 3 4102 Seraing - Belgium Tel: +32 4 364 20 50 | Fax: +32 4 364 20 51 orders@diagenode.com info@diagenode.com

Diagenode Inc. USA | NORTH AMERICA

400 Morris Avenue, Suite #101 Denville, NJ 07834 - USA Tel: +1 862 209-4680 | Fax: +1 862 209-4681 orders.na@diagenode.com info.na@diagenode.com For a complete listing of Diagenode's international distributors visit:

www.diagenode.com/en/company/distributors.php For rest of the world, please contact Diagenode s.a

© 2013 Diagenode, Inc. All rights reserved. The content of this document cannot be reproduced without prior permission of the authors. Bioruptor and IP-Star are registered trademarks of Diagenode.