

TECHNICAL DATASHEET

PRODUCT NAME H3K9me3 polyclonal antibody		
Cat. No. C15310013 (CS-013-100)	Type: Polyclonal ChIP-grade	Size: 100 μl
Lot #: 001	Source: Rabbit	Concentration: not determined

Description: Polyclonal antibody raised in rabbit against the region of histone H3 containing the trimethylated lysine 9 (H3K9me3).

Specificity: Human, mouse and drosophila: positive

Other species: not tested

Applications	Suggested dilution	References
Western blotting	1:750	Fig 1
ChIP	1 - 5 μl/ChIP	Ref 1

Purity: Whole antiserum from rabbit containing 0.05% azide.

Storage: Store at -20°C; for long storage, store at -80°C. Avoid multiple freeze-thaw cycles.

Precautions: This product is for research use only. Not for use in diagnostic or therapeutic procedures.

This antibody has been described in:

(1) Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P and Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16: 93-105.

Last data sheet update: March 2, 2010

Target description

Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called "histone code". Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Trimethylation of histone H3K9 is associated with inactive regions.

TECHNICAL DATASHEET

Figure 1 Western blot analysis using the Diagenode antibody directed against H3K9me3

Histone (acid) extracts from HeLa cells (HeLa HE, 20 μ g) were analysed by Western blot using the Diagenode antibody against H3K9me3 (cat# CS-013-100) diluted 1:750 in TBS-Tween containing 5% skimmed milk. The location of the protein of interest is indicated on the right.