

WELCOME TO DIAGENODE

ChIP Workshop

Jessica Apulei, Ekaterina Gracheva & Juri Kazakevych

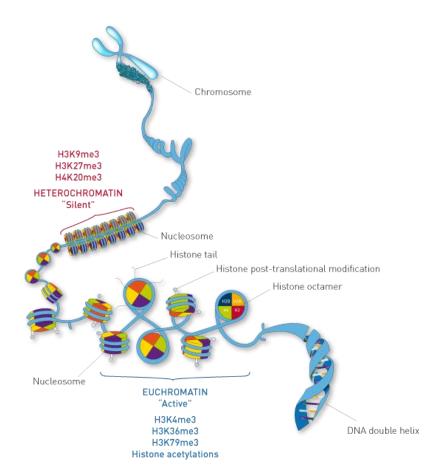
June 2021

OBJECTIVES

Day 1

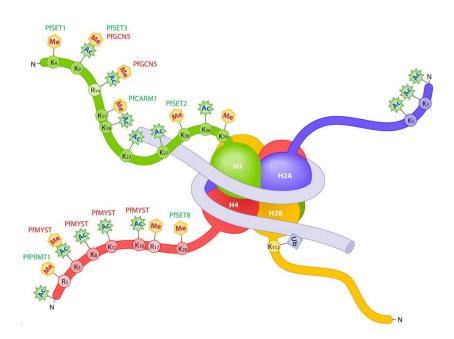
- ChIP overviewChip-qPCR vs. ChIP-Seq
- Chromatin preparation
 Fixation, Cell lysis and Chromatin shearing
- Setting up IP
 Antibodies, Replicates, inputs, controls

Day 2


- ChIP-qPCR
- ChIP-seq: library prep & sequencing
- ChIP-seq: analysis
- Overview of alternative methods

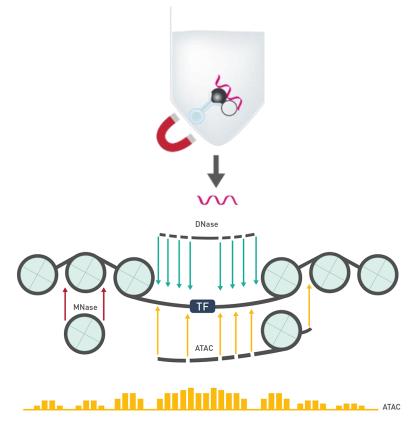
What is Chromatin?

A complex of DNA and proteins found in eukaryotic cells

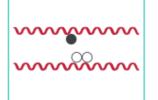


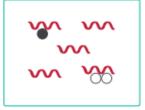
INTRODUCTION

What is Chromatin?


- Identifying genome-wide DNA binding sites for histones, transcription factors and other proteins
- Defines transcription factor (TF) binding sites
- Reveals gene regulatory networks in combination with RNA sequencing and methylation analysis

CHROMATIN ANALYSIS

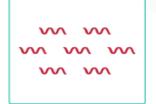

- Interaction between proteins and DNA (immuno- assays)
 - ChIP-qPCR
 - ChIP-Seq
 - Cut&Run and Cut&TAG
- Methods to study chromatin accessibility (non-immuno assays)
 - ATAC-seq



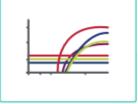
Workflow: Chromatin ImmunoPrecipitation (ChIP):

Step 1

Cross link to fix proteins to DNA Step 2



Shear chromatin


Step 3

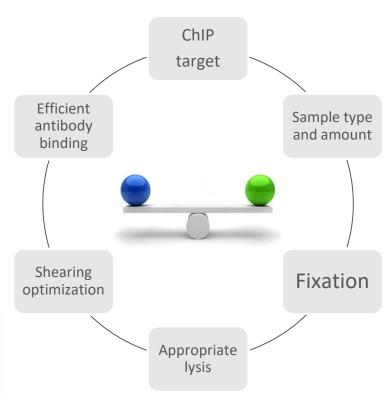
Immunoprecipitate with antibody and magnetic beads Step 4

Reverse crosslinks and purify Step 5

Analyze by qPCR

Step 6

Prepare the libraries for NGS



ChIP-qPCR or ChIP-Seq?

ChIP-qPCR	ChIP-Seq	
Single-locus data	Genome-wide data suitable for exploratory analysis	
QC step for ChIP-seq		
Low-cost	High sequencing costs	
Fast	Longer protocol	
	High sequencing turnaround time	

Summary – Tips to Prepare Good Chromatin

Guide for successful chromatin preparation using the Bioruptor® Pico

Starting material: Cells and Tissues

	Standard	Low-input
Cells	Histones: 1 million/IP TF: 4 million/IP for TF (from 100.000 cells depending on target) iDeal ChIP kits	Histones only 10-100k/IP True MicroChIP-seq Kit
Tissue	soft tissues: Dounce homogenization (liver, brain) hard/frozen/fibrous: bead beater like TissueLyser Histones: 5-7 mg/IP TF: 30mg/IP (from 1.5mg/IP depending on target) iDeal ChIP kits	Histones only amounts depend on tissue type
FFPE-tissue	Challenging due to extensive crosslinking de-paraffinization with Heptane instead of xylene -> easier, non-toxic workflow from 300ng DNA per IP iDeal ChIP-FFPE kit	
Plant tissue	65mg - 2g / chromatin preparation , depending on sample <u>Universal Plant ChIP-seq kit</u>	

••••

Low-input ChIP

True MicroChIP-seq kit

10k-100k cells/histone-IP 10k-700k cells /chromatin prep

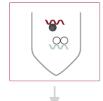
Suitable for FACS-sorted samples

Single step lysis & minimal handling

Protocol for:

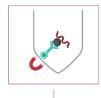
Batch

Individual


FACS-sorted

Cell or tissue collection and DNA-protein cross-linking

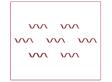
30 minutes to 1 hour



Cell lysis and chromatin shearing

1 to 2 hours

Overnight


LEGEND

Elution, decross-linking and DNA purification

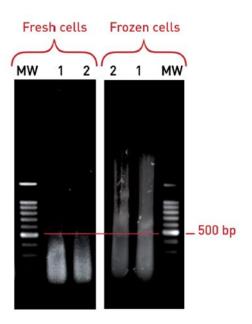
5 hours

Fixation

Covalent stabilization of protein-DNA interactions; Reversible
 Directly in medium for weak or rare protein-DNA interaction
 For histone marks, cells can be resuspended by trypsinization before fixation

Common fixative: Formaldehyde

Fresh


Methanol-free not mandatory

Target Fixator	Formaldehyde	ChIP Cross-link Gold C01019021
Histones	Yes (8-10 min)	No need
Transcriptional factors directly bound to DNA	Yes (10-20 min)	No need
Indirect higher order and/or dynamic interactions	Yes (10-15 min)	Yes (30-45 min)

Cell Lysis

- One step lysis for low cell numbers
 - Lyse cells directly with an SDS-containing buffer
- Two step lysis standard protocol, difficult cells
 - Remove soluble cytosolic proteins first
 - Improves sonication efficiency
 - Reduces background
- Tips/Tricks/Critical steps:
 - Incubate on ice to start lysis and get narrower fragments size
 - Centrifuge to remove soluble membranes and cytosol
 - Avoid freezing chromatin if possible

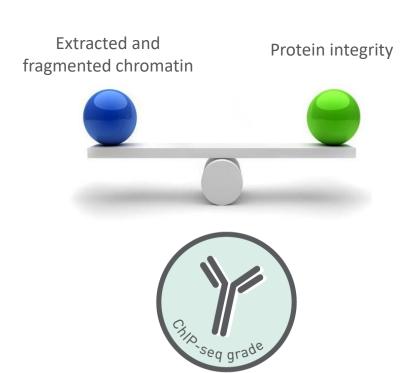
Stopping Points

Cells

- Fix cells, lyse, isolate & shear chromatin -> freeze
- Fix cells, lyse, isolate chromatin -> freeze
- Fix cells -> freeze

Tissues

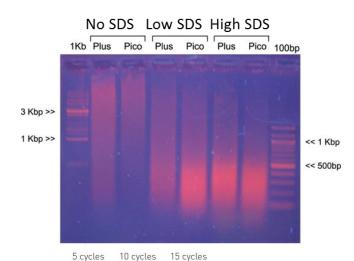
- Fix tissue, lyse, isolate & shear chromatin -> freeze
- Freeze prior fixation

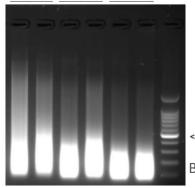

Optimal: Perform ChIP workflow directly, without freezing

Secrets of ChIP Success

- Prepare "good" chromatin
 - Suitable fragment size and available epitopes
- Use a good antibody at the right concentration

 Optimize for highest specific signal and the lowest background




Chromatin Shearing

- 100-800 bp fragments, peak 200-500bp
- Use a good sonicator
 Gentle not to dislodge protein
 Uniform and reproducible energy
 Temperature control at 4°C
 Multiplex and easy to use

- Shearing buffer with detergents, preferably SDS
 Increase sonication efficiency and chromatin yield
 Improve epitope availability
 Balance shearing and downstream IP
- Sample concentration
- Select the shortest time resulting in efficient shearing

<< 500bp

Bioruptor Pico

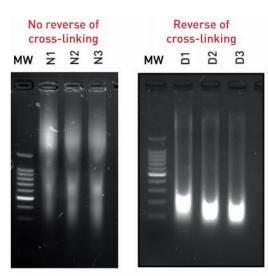
15

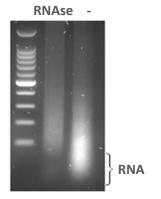
Chromatin Shearing

Chromatin Shearing

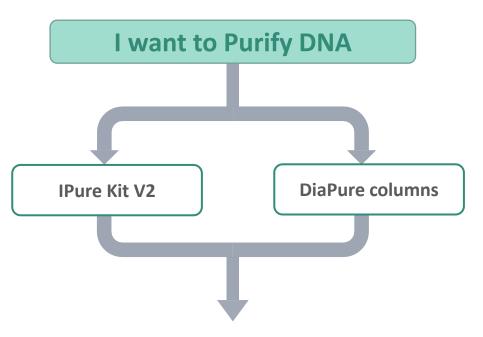
Chromatin EasyShear Kits

Kit of choice for:


Features & Benefits


- Highly optimized for chromatin preparation
- Preserves epitope integrity
- Recommended for the optimization of the chromatin shearing of a new cell line/new sample type prior to ChIP
- Validated: Kit performance has been validated in ChIP-seq

Analyzing Fragment Size


- De-crosslink
 - · Residual crosslinking retards migration
- RNase treatment
 - reduces background
- DNA purification
 - IPure beads + DiaMag magnetic rack
 - **Low inputs:** DiaPure columns (eluted in 6 μl)
- Electrophoretic analysis
 - 1.2 1.8% agarose gel
 - 300 ng or 60k cells per lane
 - **Low inputs:** FragmentAnalyzer, 2k cells

DNA Purification

Provides pure DNA for any downstream application (e. g. NGS)

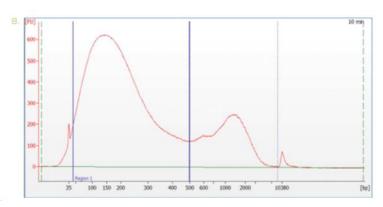
DNA Purification

IPure Kit v2

- Best yields
- Recovery of small amounts of DNA
- No toxic reagents (e.g. phenol/chloroform)
- Compatible with automation

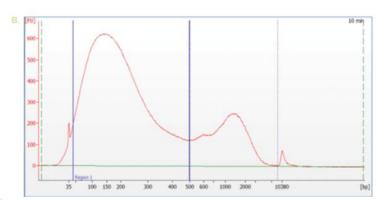
MicroChIP DiaPure columns

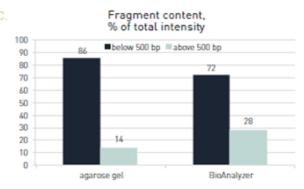
- Perfect for low concentrated samples (elution from 6 μl)
- DNA recovery 70-90% (50bp 10kB)
- No toxic reagents (e.g. phenol/chloroform)

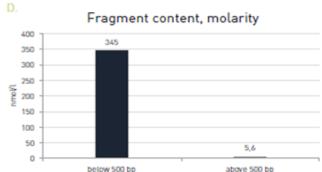


Analyzing fragment size

- Use agarose gel or fragment analyzer
- Bioanalyzer or Tapestation:
 - Over-representation of HMW fragments
 - Log-based -> visual misinterpretation of fragment distribution
 - More sensitive to overloading, incomplete reverse crosslinking and residual contaminants

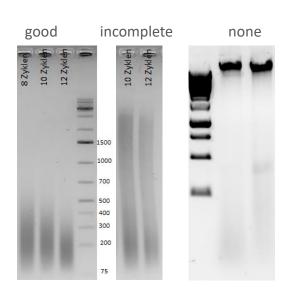





Analyzing fragment size

- Use agarose gel or fragment analyzer
- Bioanalyzer or Tapestation:
 - Over-representation of HMW fragments
 - Log-based -> visual misinterpretation of fragment distribution
 - More sensitive to overloading, incomplete reverse crosslinking and residual contaminants

500 bp


Troubleshooting Chromatin Shearing

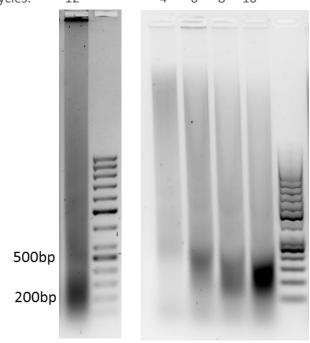
No shearing at all

- Incomplete lysis check buffer composition
- Check instrument efficiency QC test on sonicator

Incomplete shearing

- Over-fixation: check fixative and duration
- Too high cell density
- Changes in sample require adjustment of shearing protocol
 - Fresh vs. Frozen chromatin
 - Different sample types
- Wrong consumables (tubes)
- Sample out of sonication focus
 - droplets on walls/lid of tube
 - Wrong sample volume
- Wrong temperature (should be 4°C for chromatin)
- None of the above? -> Check instrument efficiency QC test on sonicator

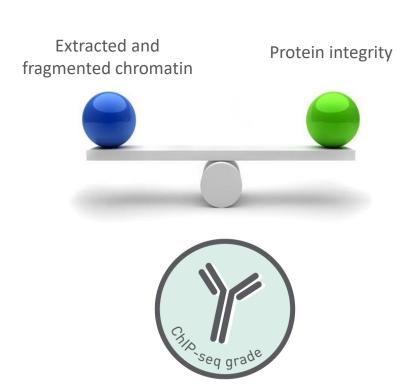
Concentration matters

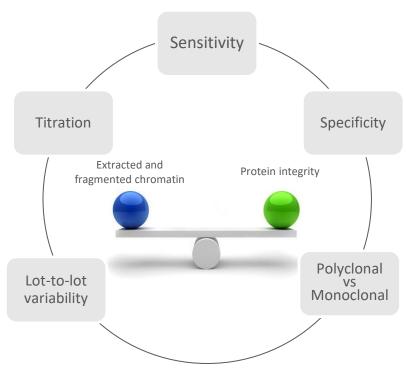

A.Thaliana root

3x-diluted undiluted (0.5g/600 μ l)

cycles: 8 12 12 15 500bp 200bp

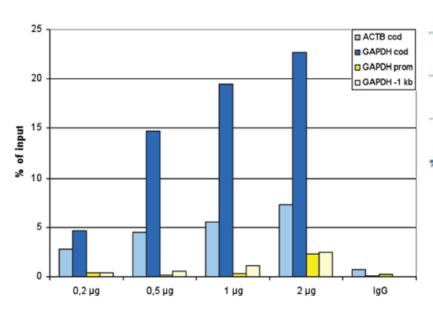
2 Mio Monocytes

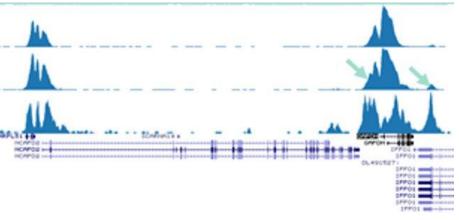

volume: $100\mu l$ $200\mu l$ cycles: 12 4 6 8 10


Secrets of ChIP Success

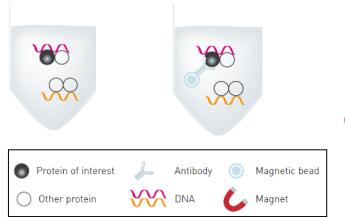
- Prepare "good" chromatin
 - Suitable fragment size and available epitopes
- Use a good antibody at the right concentration
- Optimize for highest specific signal and the lowest background

Antibodies for ChIP


https://www.diagenode.com/en/categories/chip-seq-grade-antibodies



Antibodies for ChIP


Polyclonal H3K36me3 antibody titration (Diagenode C15410192) 1µg IgG as negative IP control Chromatin from 100.000 cells

Setting up IP

Components:

- Sheared chromatin
- ChIP/ChIP-seq grade antibodies
 - -> optimized quantity
- ProteinA/G magnetic beads
- ChIP buffer
- Protease inhibitor cocktail

Antibodies for ChIP – What beads?

Agarose beads

Required: centrifuge

Sensitive to handling

High background

Risk of carry-over

Magnetic beads

Required: magnetic rack

Robust

Low background

Easy separation

Limit antibody amounts to bead capacity!

Protein G or A beads

- Both bind to IgG antibodies and are structurally similar
- Slightly different affinities for IgG subclasses across different species.
- Use appropriate depending on the IgG subtype you are using:

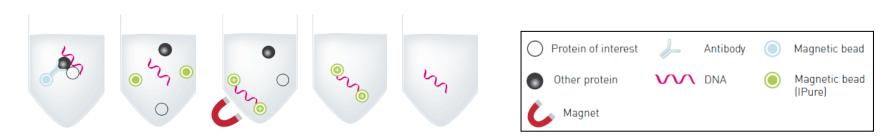
Protein A Rabbit Pig Dog Cat

Protein G Mouse Rat Human

Setting up IP: Input Sample

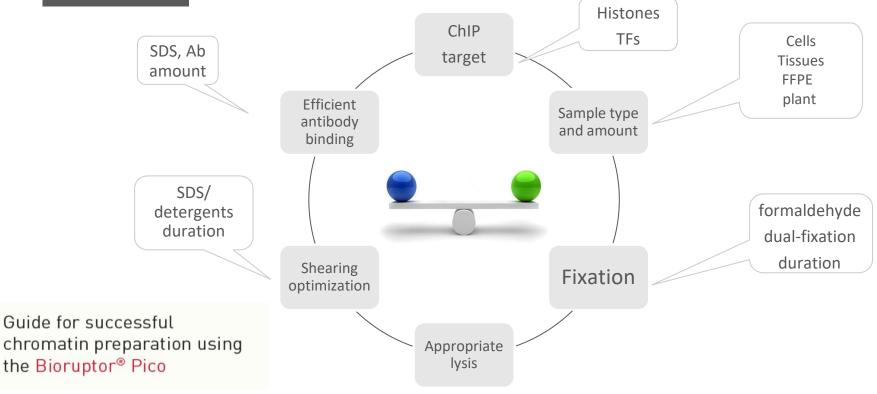
- Fraction of sheared chromatin is kept aside as INPUT
 - Processed in parallel with IP-samples from reversed crosslinking
 - Include one input for each chromatin sample
- Key reference for ChIP-qPCR and ChIP-seq analysis
- ChIP-qPCR: used to calculate the recovery (% of input)
- ChIP-seq: mandatory for bio-informatics analysis
 - Normalization for mappability of a region, avoid duplication bias etc.
 - Input pooling can be considered for ChIP-seq on very similar samples

Setting Up IP: Additional Controls


- Positive control (H3K4me3, CTCF):
 - Confirm overall efficiency of ChIP workflow ChIP optimization for new target
- Negative Control (IgG)
 - Measure of non specific IP background
 Include one negative IgG control in each series of ChIP reactions
- Not necessary to sequence these but good control for qPCR
- Biological Replicates

ChIP-qPCR ≥3

ChIP-seq ≥2

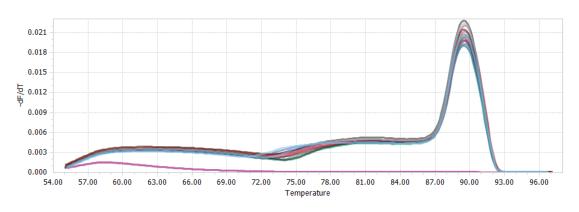

ChIP Protocol – Elution, de-crosslinking and DNA isolation

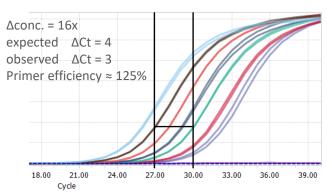
- Elution of the chromatin complexes from protein A/G-bound magnetic beads: elution buffer 30 min at RT
- Reversal of cross-links: Incubation for at least 4h at 65°C
- Isolation of the ChIP'd DNA:
 IPure magnetic beads
 Column purification (DiaPure columns for low elution volumes >6µl)

Summary – Tips to Prepare Good Chromatin

ChIP-qPCR

- Target & Primer selection is key for ChIP-qPCR
- Predict qPCR-targets from ChIP-seq data
- qPCR as QC prior ChIP-seq
- If no ChIP-seq data: estimate binding from similar data, biological function etc. -use multiple regions
- PCR program depends on Master Mix, qPCR system and primer pairs

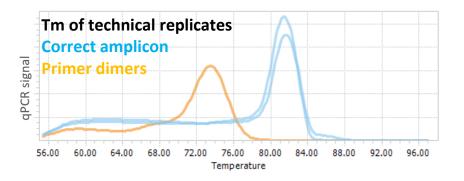

Setting up ChIP-qPCR


Target primer design:

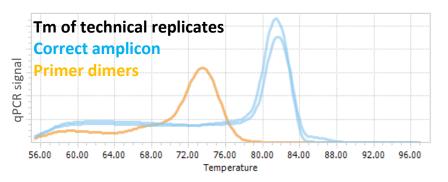
- Place primers around binding site
- 50-150bp amplicons
- 20-30 bp primers with a similar Tm between 55° and 60°C

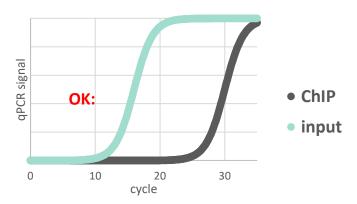
Primer pair validation:

- Check on gDNA/input for T_m profile
- Check efficiency (95-105% acceptable)



Setting up ChIP-qPCR


- QC
- T_m: no second peaks, no primer dimers
- technical replicates within 0.3 Ct
- Ct values >> 30 are often not reliable


Setting up ChIP-qPCR


- QC
- T_m: no second peaks, no primer dimers
- technical replicates within 0.3 Ct
- Ct values >>30 are often not reliable

ChIP and input samples

- Adjust amount of ChIP-sample/input to obtain comparable Ct values
- Consider primer efficiency for high ΔCt

ChIP-qPCR analysis

ChIP recovery R:

- chromatin recovery as % of Input
- R should be minimal for the IgG control and high for the epitope of interest

$$R = \frac{2^{Ct (input) - Ct(ChIP)}}{100 (input fraction)}$$

-> for each target separately

Input fraction is often corrected with a logarithmic compensatory factor, e.g. -6.64 Ct for 1% input

ChIP fold-enrichment F **with \Delta\DeltaCt method:**

- fold-enrichment of bound vs. epitope-"free" regions
- F varies depending on regions analyzed

$$F = \frac{R(positive \ region)}{R(negative \ region)}$$

-> main success parameter

Successful ChIP?

- If wrong regions targeted risk of false negative result
- **F** > 2 for ChIP-qPCR analysis
- F > 4 for ChIP-seq

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

Antibodies: IgG, H3K4me3

Ct values

Α

P G1 G2 N

IgG H3K4me3 I		H3K4me3		Input (1% o	of sample)
34.0	36.0	26.0	26.1	27.0	27.1
35.0	35.0	27.0	27.2	26.0	25.7
-	37.0	33.0	34.0	29.0	29.6
34.0	35.0	33.0	33.5	28.0	28.1

В

IgG			H3K4me3		Input (1% c	of sample)
	-	36.4	25.4	25.5	26.5	26.6
	35.4	36.4	26.4	26.6	25.4	25.1
	34.4	33.4	28.7	28.5	28.6	28.7
	35.4	-	32.4	33.4	27.4	27.5

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

В

Antibodies: IgG, H3K4me3

Ct values

P	
G1	
G2	
N	

IgG	i		H3K4me3		Input (1% c	of sample)
	34.0	36.0	26.0	26.1	27.0	27.1
	35.0	35.0	27.0	27.2	26.0	25.7
	-	37.0	33.0	34.0	29.0	29.6
	34.0	35.0	33.0	33.5	28.0	28.1

_					
IgG		H3K4me3		Input (1% c	of sample)
-	36.4	25.4	25.5	26.5	26.6
35.4	36.4	26.4	26.6	25.4	25.1
34.4	33.4	28.7	28.5	28.6	28.7
35.4	-	32.4	33.4	27.4	27.5

1. Technical sanity check

A

- values out of range
- high Ct-variation (>0.3) between technical replicates
- A/B inputs shifted
- Ct(H3K4me3) ≈ Ct(input)

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Α

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

Antibodies: IgG, H3K4me3

2. Averaging Technical replicates

P G1 G2 N

IgG		H3K4me3	Input (1% o	f
	35.0	26.1	27.1	
	35.0	27.1	25.9	
	37.0	33.5	29.3	
	34.5	33.3	28.1	

sample)	IgG	H3K4me3	Input
	36.4	25.5	26.6
	35.9	26.5	25.3
	33.9	28.6	28.7
	35.4	32.9	27.5

В

3. Biological Sanity Check

- Ct(P) < Ct(N) for H3K4me3
- Ct(H3K4me3) << Ct(IgG)

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

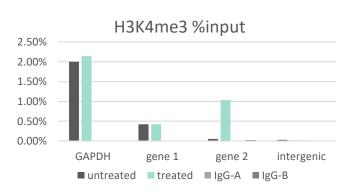
Antibodies: IgG, H3K4me3

Р		
G1		
G2		
N		

IgG		H3K4me3	Input (1% o
	35.0	26.1	27.1
	35.0	27.1	25.9
	37.0	33.5	29.3
	34.5	33.3	28.1

f sample)	IgG	H3K4me3	Input
	36.4	25.5	26.6
	35.9	26.5	25.3
	33.9	28.6	28.7
	35.4	32.9	27.5

В


4. Recovery (% of input)

$$R = \frac{2^{Ct (input) - Ct(ChIP)}}{100 (input fraction)}$$

Α

P G1 G2 N

Α	IgG-A	В	IgG-B
2.00	% 0.00%	2.14%	0.00%
0.42	% 0.00%	0.42%	0.00%
0.05	% 0.00%	1.04%	0.03%
0.03	% 0.01%	0.02%	0.00%

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

Antibodies: IgG, H3K4me3

H3K4me3 % of input

	A	В
P	2.00%	2.14%
N	0.03%	0.02%

5. ChIP fold-enrichment

$$F_A = \frac{R(P_A)}{R(N_A)} = 74x \ enrichment$$
 $F_B = \frac{R(P_B)}{R(N_B)} = 94x \ enrichment$

ChIP-qPCR Exercise

Conditions: untreated (A), treated (B)

Targets: positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)

Antibodies: IgG, H3K4me3

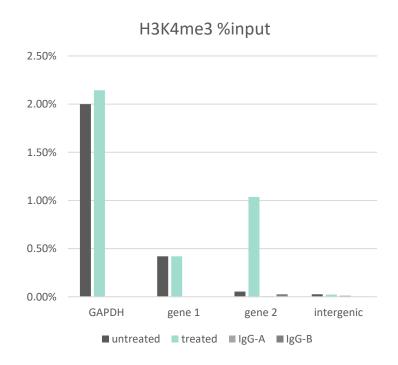
H3K4me3 % of input

	Α	В
P	2.00%	2.14%
N	0.03%	0.02%

5. ChIP fold-enrichment

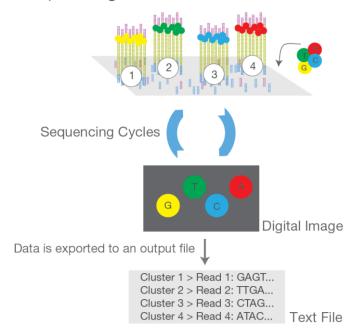
$$F_A = \frac{R(P_A)}{R(N_A)} = 74x$$
 enrichment

$$F_B = \frac{R(P_B)}{R(N_B)} = 94x enrichment$$


6. Assessment

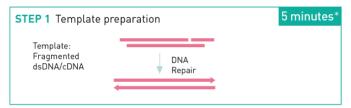
- F>2 ChIP-qPCR qualified- F>4 ChIP-seq qualified
- 7. Optimization
 - if **R** or **F** are low, optimize ChIP parameters

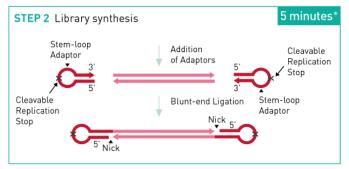
ChIP-qPCR Analysis summary

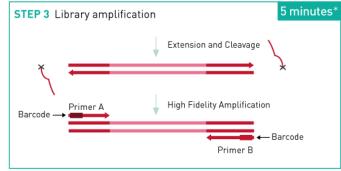

- Determine ChIP-recovery and fold-enrichment
- input used as reference to calculate ChIP-recovery
- Each ChIP-target requires specific control regions
- Suitable control regions can vary among samples

ChIP-seq: library prep

C. Sequencing


ChIP-seq: Library Prep




- Low input
- Minimal steps
 - To maximize recovery
- Sensitive
 - Minimal PCR amplification
- Suitable for pooling

MicroPlex kit workflow

Benefits of Multiplexing

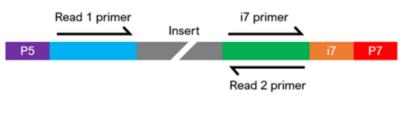
■ Fast High-Throughput Strategy:

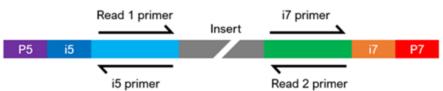
Large sample numbers can be simultaneously sequenced

Cost-Effective Method:

- Reduces time and reagent use
- Cluster detection more efficient with different bases in beginning of read

Simplified Analysis:


Automatic sample identification with "barcodes" using Illumina software

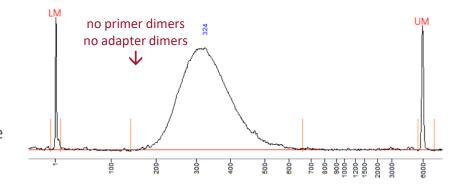


Single and Dual-indexed Libraries

- Single-index sequencing
 - Low level of multiplexing
- Dual indexing
 - Higher multiplexing more samples per lane possible
 - Higher accuracy of sample identification
- Unique dual indexing (UDI)
 - Allows filtering of index-hopping events

Library Pooling

Determine library size


- Bioanalyzer or Fragment Analyzer
- Identify adapter dimers or unexpected library sizes

• Quantify

- Qubit
- qPCR –quantify sequencable library
- Convert from ng/µl to nM using average library size

Same size for best clustering

ChIP-seq: Sequencing Settings

Read length

- 50 bp sufficient for most ChIPs
- adjust fragment-size to read length

Sequencing depth

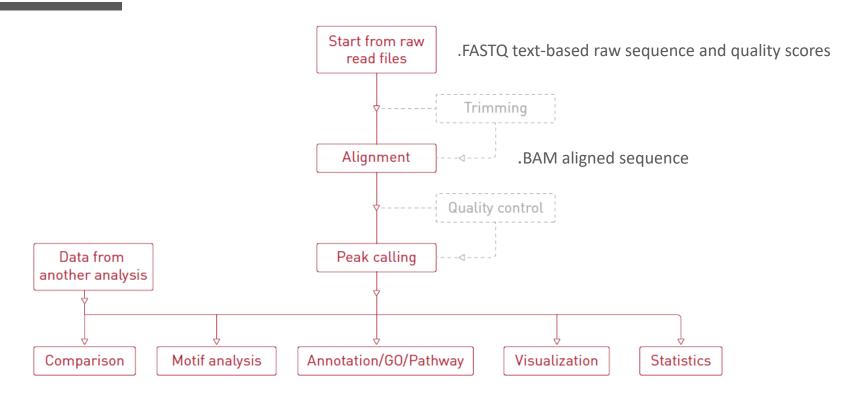
- mainly set by samples/flow cell and flow cell type
- 30 M reads for sharp peaking targets e.g. H3K4me3, H3K27ac
- 50 M for broadly distributed and abundant targets e.g. H3K27me3
- use same depth for input

Replicates

- ≥ duplicates
- increased replicate number will improve sensitivity of the downstream analysis

Input sequencing

- one input per sample is gold standard
- pooling inputs from replicates can often be considered



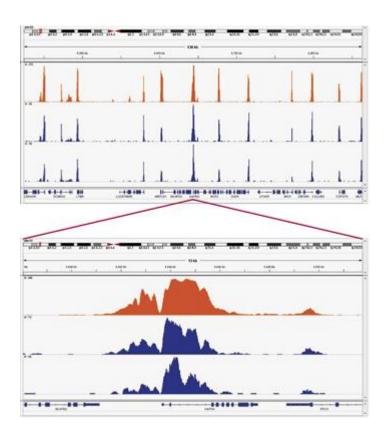
ChIP-seq: Analysis

Bioinformatician	R	https://www.r-project.org/
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/ biit.cs.ut.ee/gprofiler/gost
Wet-lab expert with free time	standard bio-informatic services	https://www.diagenode.com/en/categories/Services Comprehensive Multi-Omic and bio-info services
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/ initial & advanced data analysis, genome browser, graphical presentation of data https://biit.cs.ut.ee/gprofiler/gost Functional profiling tool
No expertise or no free time	advanced bio-informatic services	https://www.diagenode.com/en/categories/Services Comprehensive Multi-Omic and bio-info services

ChIP-seq: Analysis

ChIP-seq: Analysis

Standard bioinformatic analysis:


- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis
 (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis

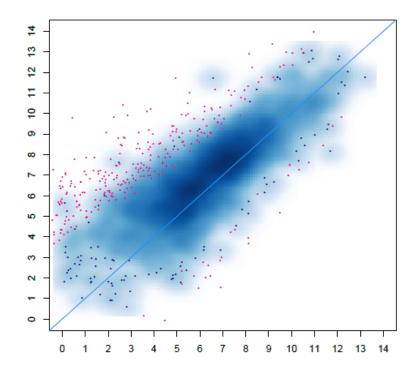
(RNA-seq, ATAC-seq, more ChIP-seq targets)

- publication-ready Visualization of genomic regions

ChIP-seq: Analysis

Standard bioinformatic analysis:

- alignment to reference genome
- peak calling


Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis

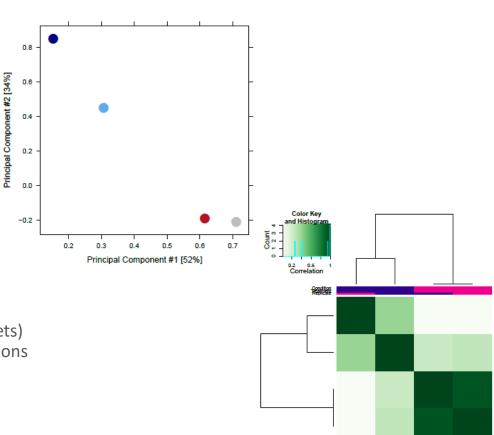
 (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis

(RNA-seq, ATAC-seq, more ChIP-seq targets)

- publication-ready Visualization of genomic regions

ChIP-seq: Analysis

Standard bioinformatic analysis:


- alignment to reference genome
- peak calling

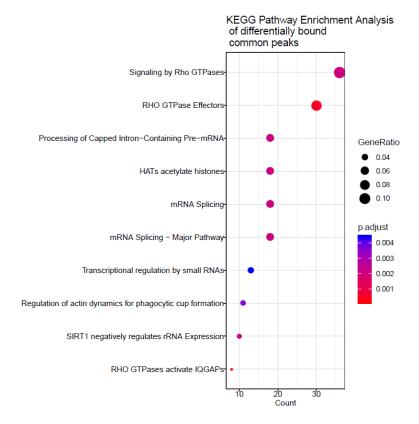
Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis
 (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis

(RNA-seq, ATAC-seq, more ChIP-seq targets)

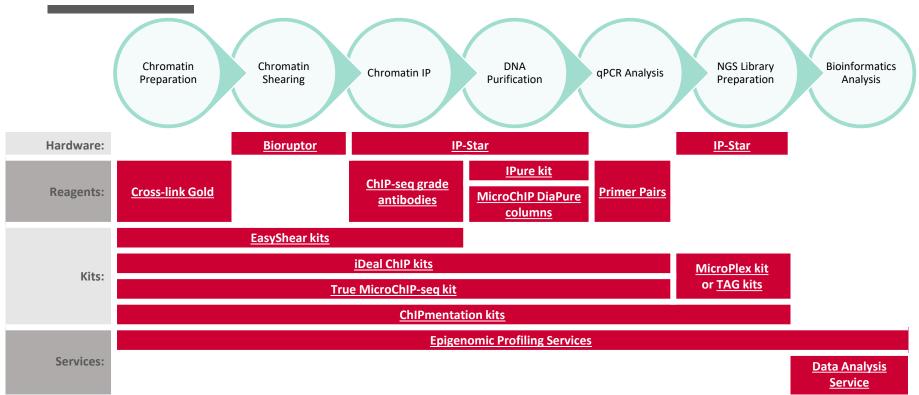
- publication-ready Visualization of genomic regions

ChIP-seq: Analysis


Standard bioinformatic analysis:

- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:


- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis

 (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis (RNA-seq, ATAC-seq, more ChIP-seq targets)
- publication-ready Visualization of genomic regions

Summary

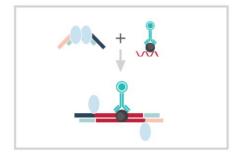
www.diagenode.com

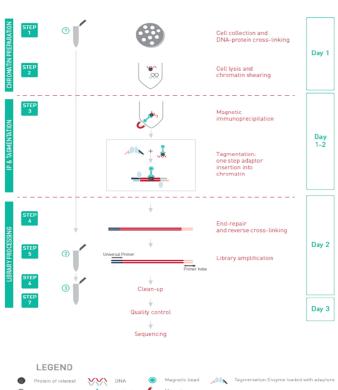
Other Methods to Study Chromatin

- Interaction between proteins and DNA (immuno- assays)
 - ChIPmentation
 - Cut&Run and Cut&TAG

- Methods to study chromatin accessibility (non-immuno assays)
 - ATAC-seq

ChIPmentation™ & μChIPmentation™

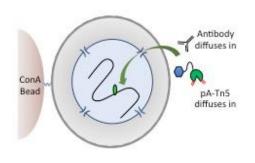

Easier and faster than classical ChIP-seq

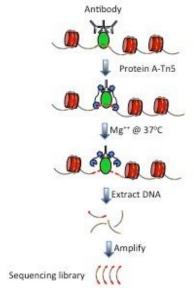

Validated for various histone marks

Ideal for analysis of large cohorts of samples (easy and fast)

Ideal for analysis of large number of marks on a unique sample

 μ Chipmentation for 10,000 cells





CUT&Tag: Cleavage Under Targets and Tagmentation

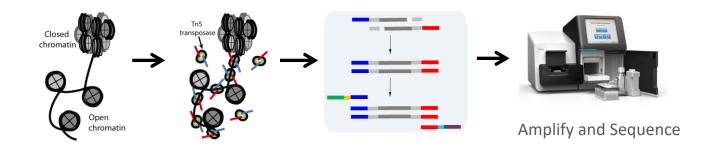
CUT&Tag (Cleavage Under Targets & Tagmentation)

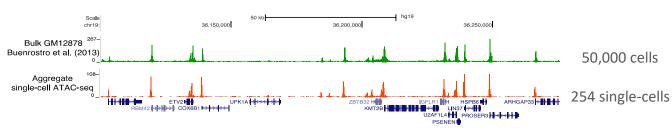
Key features:

Crucial reagent:

proteinA-Tn5

Fast and easy protocol:

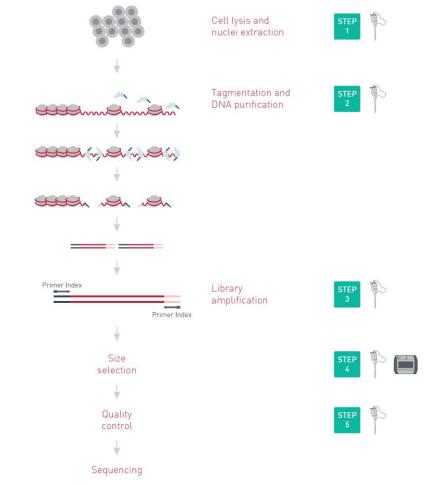

- fast tagmentation-based library prep
- No chromatin prep
- Suitable for low cell numbers



New application note available <u>here</u>

Assay for Transposase-Accessible Chromatin

Buenrostro et al., Nature, 2013



New! ATAC-seq Kit

Starting material: 200k-500k/sample

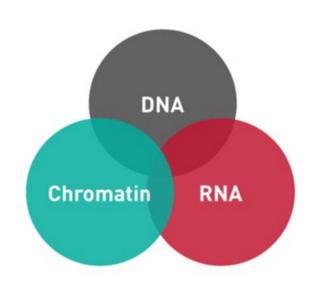
Minimal: 20k cells/reaction Optimal: 50k cells/reaction

Validated on mammalian cells

LEGEND

processing

processing



EPIGENOMICS PROFILING SERVICES

15 YEARS OF EXPERTISE IN EPIGENETICS

- End-to-end epigenetic service and analysis
- Collaborative and customized project design
- Dedicated in-house expert for your project
- Presentation-quality data and graphs

THANK YOU!

Thank you for taking part in our ChIP workshops! (more coming)

Presentation will be sent to each participant

Watch for a little survey in your inbox – your feedback is invaluable

Stay in the know

Join our newsletter

@Diagenode

Spread the word #EpiWorkshopsWithDiagenode (more gifts for you :-))

www.diagenode.com