diagenode

Innovating Epigenetics Solutions

WELCOME TO DIAGENODE

ChIP Workshop

Jessica Apulei & Juri Kazakevych

8-9 December 2020

CHIP WORKSHOP OBJECTIVES

- ChIP overview
 - Chip-qPCR vs. ChIP-Seq
- Chromatin preparation
 Fixation, Cell lysis and Chromatin shearing
- Setting up IP
 - Antibodies, Replicates, inputs, controls
- ChIP-qPCR
- ChIP-seq: library prep & sequencing
- ChIP-seq: analysis
- Overview of Alternate methods

INTRODUCTION

What is Chromatin?

A complex of DNA and proteins found in eukaryotic cells

INTRODUCTION

What is Chromatin?

- Identifying genome-wide DNA binding sites for histones, transcription factors and other proteins
- Defines transcription factor binding sites
- Reveals gene regulatory networks in combination with RNA sequencing and methylation analysis

CHIP WORKSHOP CHROMATIN ANALYSIS

- Interaction between proteins and DNA (immuno- assays)
 - ChIP-qPCR
 - ChIP-Seq
 - Cut&Run and Cut&TAG
- Methods to study chromatin accessibility (non-immuno assays)
 - ATAC-seq

Workflow: Chromatin ImmunoPrecipitation (ChIP):

CHIP WORKSHOP ChIP-qPCR or ChIP-Seq?

ChIP-qPCR	ChIP-Seq	
Single-locus data	Genome-wide data	
QC step for ChIP-seq	suitable for exploratory analysis	
Low-cost	High sequencing costs	
Fast	Longer protocol	
	High sequencing turnaround time	

Summary – Tips to Prepare Good Chromatin

https://www.diagenode.com/files/protocols/bioruptor-pico-chromatin-preparation-guide.pdf

Starting material: Cells and Tissues

Cells

ChIP: 1 million/IP for histones, 4 million/IP for TF (less depending on histone/TF) low-input ChIP: 10k/IP for histones

Tissues

Amount – 20-30 mg/IP Dounce homogenization for soft tissues (e.g. liver or brain) Bead beater like TissueLyser for hard fibrous frozen tissues (e.g. muscles)

FFPE tissue

Challenging due to extensive crosslinking Heptane instead of xylene for de-paraffinization -> easier, non-toxic workflow

CHIP WORKSHOP Fixation

- Covalent stabilization of protein-DNA interactions; Reversible Directly in medium for weak or rare protein-DNA interaction For histone marks, cells can be resuspended by trypsinization before fixation
- Common fixative: Formaldehyde Fresh Methanol-free not mandatory

Target Fixator	Formaldehyde	ChlP Cross-link Gold C01019021
Histones	Yes (8-10 min)	No need
Transcriptional factors directly bound to DNA	Yes (10-20 min)	No need
Indirect higher order and/or dynamic interactions	Yes (10-15 min)	Yes (30-45 min)

Cell Lysis

- Two step lysis standard protocol, difficult cells
 - Remove soluble cytosolic proteins first
 - Improves sonication efficiency
 - Reduces background
- One step lysis for low cell numbers
 - Lyse cells directly with an SDS-containing buffer
- Tips/Tricks/Critical steps:
 - Incubate on ice to start lysis and get narrower fragments size
 - Centrifuge to remove soluble membranes and cytosol
 - Avoid freezing chromatin if possible

Stopping Points

Cells

- Fix cells, lyse, isolate & shear chromatin -> freeze
- Fix cells, lyse, isolate chromatin -> freeze
- Fix cells -> freeze

Tissues

- Fix tissue, lyse, isolate & shear chromatin -> freeze
- Freeze prior fixation

Secrets of ChIP Success

- Prepare "good" chromatin
 - Suitable fragment size and available epitopes
- Use a good antibody at the right concentration

 Optimize for highest specific signal and the lowest background

Chromatin Shearing

- 100-800 bp fragments, peak 200-500bp
 - Use a good sonicator Gentle - not to dislodge protein Uniform and reproducible energy Temperature control at 4°C Multiplex and easy to use

- Shearing buffer with detergents, preferably SDS
 Increase sonication efficiency and chromatin yield
 Improve epitope availability
 Balance shearing and downstream IP
- Sample concentration
- Select the shortest time resulting in efficient shearing

Analyzing Fragment Size

De-crosslink

- Residual crosslinking retards migration
- RNase treatment
 - reduces background
- DNA purification
 - IPure beads + DiaMag magnetic rack
 - Low inputs: DiaPure columns (eluted in 6 μl)
- Electrophoretic analysis
 - 1.2 1.8% agarose gel
 - 300 ng or 60k cells per lane
 - Low inputs: FragmentAnalyzer, 2k cells

RNAse ·

RNA

Analyzing fragment size

- Use agarose gel or fragment analyzer
- Bioanalyzer or Tapestation:
 - Over-representation of HMW fragments
 - Log-based -> visual misinterpretation of fragment distribution
 - More sensitive to overloading, incomplete reverse crosslinking and residual contaminants

Analyzing fragment size

- Use agarose gel or fragment analyzer
- Bioanalyzer or Tapestation:
 - Over-representation of HMW fragments
 - Log-based -> visual misinterpretation of fragment distribution
 - More sensitive to overloading, incomplete reverse crosslinking and residual contaminants

Troubleshooting Chromatin Shearing

- No shearing at all
 - Incomplete lysis check buffer composition
 - Check instrument efficiency QC test on sonicator
- Incomplete shearing
 - Over-fixation: check fixative and duration
 - Too high cell density
 - Changes in sample require adjustment of shearing protocol
 - Fresh vs. Frozen chromatin
 - Different sample types
 - Wrong consumables (tubes)
 - Sample out of sonication focus
 - droplets on walls/lid of tube
 - Wrong sample volume
 - Wrong temperature (should be 4°C for chromatin)
 - None of the above? -> Check instrument efficiency QC test on sonicator

Secrets of ChIP Success

- Prepare "good" chromatin
 - Suitable fragment size and available epitopes
- Use a good antibody at the right concentration
- Optimize for highest specific signal and the lowest background

Antibodies for ChIP

Antibodies for ChIP

Polyclonal H3K36me3 antibody titration (Diagenode C15410192) 1µg IgG as negative IP control Chromatin from 100.000 cells

Setting up IP

Components:

- Sheared chromatin
- ChIP grade antibodies

 > optimized quantity
- ProteinA/G magnetic beads
- ChIP buffer
- Protease inhibitor cocktail

....

Antibodies for ChIP – What beads?

Agarose beads

Required: centrifuge

Sensitive to handling

High background

Risk of carry-over

Magnetic beads

Required: magnetic rack

Robust

Low background

Easy separation

Limit antibody amounts to bead capacity!

Protein G or A beads

- Both bind to IgG antibodies and are structurally similar
- Slightly different affinities for IgG subclasses across different species.
- Use appropriate depending on the IgG subtype you are using:

Protein A	
Rabbit	
Pig	
Dog	
Cat	

Setting up IP: Input Sample

- Fraction of sheared chromatin is kept aside as INPUT
 - Processed in parallel with IP-samples from reversed crosslinking
 - Include one input for each chromatin sample
- Key reference for ChIP-qPCR and ChIP-seq analysis
- ChIP-qPCR: used to calculate the recovery (% of input)
- ChIP-seq: mandatory for bio-informatics analysis
 - Normalization for mappability of a region, avoid duplication bias etc.
 - Input pooling can be considered for ChIP-seq on very similar samples

Setting Up IP: Additional Controls

Positive control (H3K4me3, CTCF):

Confirm overall efficiency of ChIP workflow ChIP optimization for new target

Negative Control (IgG)

Measure of non specific IP background Include one negative IgG control in each series of ChIP reactions

- Not necessary to sequence these but good control for qPCR
- Biological Replicates
 - ChIP-qPCR \geq 3
 - ChIP-seq ≥2

.....

CHIP WORKSHOP

ChIP Protocol – Elution, de-crosslinking and DNA isolation

- Elution of the chromatin complexes from protein A/G-bound magnetic beads: elution buffer 30 min at RT
- Reversal of cross-links: Incubation for at least 4h at 65°C
- Isolation of the ChIP'd DNA: IPure magnetic beads Column purification (DiaPure columns for low elution volumes >6µl)

Summary – Tips to Prepare Good Chromatin

https://www.diagenode.com/files/protocols/bioruptor-pico-chromatin-preparation-guide.pdf

chip workshop ChIP-qPCR

- Target & Primer selection is key for ChIP-qPCR
- Predict qPCR-targets from ChIP-seq data
- qPCR as QC prior ChIP-seq
- If no ChIP-seq data: estimate binding from similar data, biological function etc. -use multiple regions
- PCR program depends on Master Mix, qPCR system and primer pairs

Setting up ChIP-qPCR

Target primer design:

- Place primers around binding site
- 50-150bp amplicons
- 20-30 bp primers with a similar Tm between 55° and 60°C
- Primer pair validation:
 - Check on gDNA/input for T_m profile
 - Check efficiency (95-105% acceptable)

Setting up ChIP-qPCR

• QC

- T_m: no second peaks, no primer dimers
- technical replicates within 0.3 Ct
- Ct values >>30 are often not reliable

Setting up ChIP-qPCR

• QC

- T_m: no second peaks, no primer dimers
- technical replicates within 0.3 Ct
- Ct values >>30 are often not reliable

- ChIP and input samples
 - Adjust amount of ChIP-sample/input to obtain comparable Ct values
 - Consider primer efficiency for high ΔCt

Chip workshop Chip-qPCR analysis

ChIP recovery R:

- chromatin recovery as % of Input
- R should be minimal for the IgG control and high for the epitope of interest

 $R = \frac{2^{Ct (input) - Ct(ChIP)}}{100 (input fraction)}$

-> for each target separately Input fraction is often corrected with a logarithmic compensatory factor, e.g. -6.64 Ct for 1% input

ChIP fold-enrichment F with $\Delta\Delta$ Ct method:

- fold-enrichment of bound vs. epitope-"free" regions
- S varies depending on regions analyzed

 $F = \frac{R(positive region)}{R(negative region)}$

-> main success parameter

Successful ChIP?

- If wrong regions targeted risk of false negative result
- *F* > 2 for ChIP-qPCR analysis

- *F* > 4 for ChIP-seq

Chip workshop ChiP-qPCR Exercise

Conditions: untreated (A), treated (B)

positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N) IgG, H3K4me3

Ct values

P G1 G2 N

Targets:

Antibodies:

Α

lgG			H3K4me3		Input (1% o	of sample)
	34.0	36.0	26.0	26.1	27.0	27.1
	35.0	35.0	27.0	27.2	26.0	25.7
	-	37.0	33.0	34.0	29.0	29.6
	34.0	35.0	33.0	33.5	28.0	28.1

В

lgG			H3K4me3		Input (1% c	of sample)
	-	36.4	25.4	25.5	26.5	26.6
	35.4	36.4	26.4	26.6	25.4	25.1
	34.4	33.4	28.7	28.5	28.6	28.7
	35.4	-	32.4	33.4	27.4	27.5

Chip workshop Chip-qPCR Exercise

Conditions: untreated (A), treated (B)

positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N) IgG, H3K4me3

Ct values

Targets:

Antibodies:

	lgG		H3K4me3		Input (1% o	f sample)
Ρ	34.0	36.0	26.0	26.1	27.0	27.1
G1	35.0	35.0	27.0	27.2	26.0	25.7
G2	-	37.0	33.0	34.0	29.0	29.6
N	34.0	35.0	33.0	33.5	28.0	28.1

В

lgG			H3K4me3		Input (1% c	of sample)
	-	36.4	25.4	25.5	26.5	26.6
	35.4	36.4	26.4	26.6	25.4	25.1
	34.4	33.4	28.7	28.5	28.6	28.7
	35.4	-	32.4	33.4	27.4	27.5

1. Technical sanity check

Α

- values out of range
- high Ct-variation (>0.3) between technical replicates
- A/B inputs shifted
- $Ct(H3K4me3) \approx Ct(input)$

ChIP-qPCR Exercise

Conditions:untreated (A), treated (B)Targets:positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N)Antibodies:IgG, H3K4me3

2. Averaging Technical replicates

	Α				В		
	lgG	H3K4me3	Input (1%	of sample)	lgG	H3K4me3	Input
Р	35.0	26.1	27.1		36.4	25.5	26.6
G1	35.0	27.1	25.9		35.9	26.5	25.3
G2	37.0	33.5	29.3		33.9	28.6	28.7
N	34.5	33.3	28.1		35.4	32.9	27.5

3. Biological Sanity Check

- Ct(P) < Ct(N) for H3K4me3
- Ct(H3K4me3) << Ct(IgG)

Chip workshop ChiP-qPCR Exercise

Conditions: Targets: Antibodies:

untreated (A), treated (B) positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N) IgG, H3K4me3

	Α				В		
	lgG	H3K4me3	Input (1%	of sample)	lgG	H3K4me3	Input
Р	35.0	26.1	27.1		36.4	25.5	26.6
G1	35.0	27.1	25.9		35.9	26.5	25.3
G2	37.0	33.5	29.3		33.9	28.6	28.7
N	34.5	33.3	28.1		35.4	32.9	27.5

4. Recovery (% of input)

$$R = \frac{2^{Ct (input) - Ct(ChIP)}}{100 (input fraction)}$$

Α	lgG-A	В	lgG-B
2.00%	0.00%	2.14%	0.00%
0.42%	0.00%	0.42%	0.00%
0.05%	0.00%	1.04%	0.03%
0.03%	0.01%	0.02%	0.00%
	A 2.00% 0.42% 0.05% 0.03%	A lgG-A 2.00% 0.00% 0.42% 0.00% 0.05% 0.00% 0.03% 0.01%	A IgG-A B 2.00% 0.00% 2.14% 0.42% 0.00% 0.42% 0.05% 0.00% 1.04% 0.03% 0.01% 0.02%

Chip workshop Chip-qPCR Exercise

Conditions: Targets: Antibodies: untreated (A), treated (B) positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N) IgG, H3K4me3

	A	В
D .	2.00%	2.14%
N	0.03%	0.02%

5. ChIP fold-enrichment

$$F_A = \frac{R(P_A)}{R(N_A)} = 74x \ enrichment$$
 $F_B = \frac{R(P_B)}{R(N_B)} = 94x \ enrichment$

Chip workshop ChiP-qPCR Exercise

Conditions: Targets: Antibodies: untreated (A), treated (B) positive control (e.g. GAPDH) (P), genes of interest (G1, G2) intergenic region (N) IgG, H3K4me3

	Α	В
P	2.00%	2.14%
Ν	0.03%	0.02%

5. ChIP fold-enrichment

$$F_A = \frac{R(P_A)}{R(N_A)} = 74x$$
 enrichment

$$F_B = \frac{R(P_B)}{R(N_B)} = 94x$$
 enrichment

7. Assessment

- F>2 ChIP-qPCR qualified

- F>4 ChIP-seq qualified

8. Optimization

- if **R** or **F** are low, optimize ChIP parameters

ChIP-qPCR Analysis summary

- Determine ChIP-recovery and fold-enrichment
- input used as reference to calculate ChIP-recovery
- Each ChIP-target requires specific control regions
- Suitable control regions can vary among samples

H3K4me3 %input

ChIP-seq: library prep

C. Sequencing

ChIP-seq: Library Prep

- Low input
- Minimal steps
 - To maximize recovery
- Sensitive
 - Minimal PCR amplification
- Suitable for pooling

MicroPlex kit workflow

42

Library Pooling

Determine library size

- Bioanalyzer or Fragment Analyzer
- Identify adapter dimers or unexpected library sizes

Quantify

- Qubit
- qPCR –quantify sequencable library
- Convert from ng/µl to nM using average library size
- Dilute and Pool normalized libraries
 - Same size for best clustering

Benefits of Multiplexing

Fast High-Throughput Strategy:

- Large sample numbers can be simultaneously sequenced
- Cost-Effective Method:
 - Reduces time and reagent use
 - Cluster detection more efficient with different bases in beginning of read

Simplified Analysis:

Automatic sample identification with "barcodes" using Illumina software

Single and Dual-indexed Libraries

- Single-index sequencing
 - Low level of multiplexing
- Dual indexing
 - Higher multiplexing more samples per lane possible
 - Higher accuracy of sample identification
- Unique dual indexing (UDI)
 - Allows filtering of index-hopping events

ChIP-seq: Sequencing Settings

Read length

- 50 bp sufficient for most ChIPs
- adjust fragment-size to read length

Sequencing depth

- mainly set by samples/flow cell and flow cell type
- 30 M reads for sharp peaking targets e.g. H3K4me3, H3K27ac
- 50 M for broadly distributed and abundant targets e.g. H3K27me3
- use same depth for input

Replicates

- $\ge duplicates$
- increased replicate number will improve sensitivity of the downstream analysis

Input sequencing

- one input per sample is gold standard
- pooling inputs from replicates can often be considered

....

Chip workshop ChiP-seq: Analysis

Bioinformatician	R	https://www.r-project.org/
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/
		biit.cs.ut.ee/gprofiler/gost
Wet-lab expert with free time	standard bio-informatic services	https://www.diagenode.com/en/categories/Services Comprehensive Multi-Omic and bio-info services
	free-ware and online tool kits	www.bioinformatics.babraham.ac.uk/projects/seqmonk/ initial & advanced data analysis, genome browser, graphical presentation of data
		https://biit.cs.ut.ee/gprofiler/gost Functional profiling tool
no expertise or no free time	advanced bio-informatic services	https://www.diagenode.com/en/categories/Services Comprehensive Multi-Omic and bio-info services

ChIP-seq: Analysis

ChIP-seq: Analysis

Standard bioinformatic analysis:

- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis

(e.g. Pathway analysis, Gene ontology)

- Machine learning
- integrative analysis

(RNA-seq, ATAC-seq, more ChIP-seq targets) - publication-ready Visualization of genomic regions

ChIP-seq: Analysis

Standard bioinformatic analysis:

- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis
 - (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis
- (RNA-seq, ATAC-seq, more ChIP-seq targets) publication-ready Visualization of genomic regions

ChIP-seq: Analysis

Standard bioinformatic analysis:

- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis

(e.g. Pathway analysis, Gene ontology)

Principal Component #2 [34%]

- Machine learning
- integrative analysis
 - (RNA-seq, ATAC-seq, more ChIP-seq targets)
- publication-ready Visualization of genomic regions

ChIP-seq: Analysis

Standard bioinformatic analysis:

- alignment to reference genome
- peak calling

Advanced bioinformatic analysis:

- annotation of peaks and genes
- differential analysis of peak/gene lists
- unsupervised analysis (PCA, clustering)
- functional enrichment analysis (e.g. Pathway analysis, Gene ontology)
- Machine learning
- integrative analysis
 - (RNA-seq, ATAC-seq, more ChIP-seq targets)
- publication-ready Visualization of genomic regions

CHIP WORKSHOP Summary

Solutions for each step of the way : Bioruptor, Kits, Antibodies, NGS library prep and Services

www.diagenode.com

Other Methods to Study Chromatin

- Methods to study the interaction between proteins and DNA (immuno- assays):
 - ChIPmentation
 - Cut&TAG

ChIPmentation[™] & µChIPmentation[™]

Easier and faster than classical ChIP-seq

Validated for various histone marks

Ideal for analysis of large cohorts of samples (easy and fast)

Ideal for analysis of large number of marks on a unique sample

 $\mu Chipmentation$ for 10,000 cells

CUT&Tag: Cleavage Under Targets and Tagmentation

CUT&Tag (Cleavage Under Targets & Tagmentation)

Protein A-Tn5 @ 37% Extract DNA Amplify ncing library

Key features:

Crucial reagent:

proteinA-Tn5

Fast and easy protocol:

- fast tagmentation-based library prep
- No chromatin prep

Suitable for low cell numbers

DIAGENODE SERVICE SOLUTIONS

EPIGENOMICS PROFILING SERVICES

- End-to-end epigenetic service and analysis
- Collaborative and customized project design
- Dedicated in-house expert for your project
- Presentation-quality data and graphs

CHIP WORKSHOP THANK YOU!

Thank you for taking part in our ChIP workshops! (more coming)

Presentation will be sent to each participant

Watch for a little survey in your inbox - your feedback is invaluable

Stay in the know

Join our newsletter

@Diagenode

Spread the word **#EpiWorkshopsWithDiagenode** (more gifts for you :-))

customer.support@diagenode.com

www.diagenode.com